Numerical simulation of gas dynamics in a bubble during its collapse with the formation of shock waves

  • A. A. Aganin
  • M. A. Il’gamov
Article

Abstract

The specific features of calculation of a gas in a spherical bubble located in the center of a spherical volume of weakly compressible fluid are considered. The problems of motion of a cold gas to a point and a spherical piston converging to a point are used to evaluate the algorithm. It is shown that significant errors can arise in calculation of spherical waves in the vicinity of the pole. These errors can be substantially reduced by means of artificial viscosity in the Riemann problem.

Keywords

Shock Wave Riemann Problem Cavitation Bubble Bubble Radius Bubble Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lord Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,”Philos. Mag.,34, No. 200, 94–98 (1917).MATHGoogle Scholar
  2. 2.
    M. S. Plesset, “The dynamics of cavitation bubbles,”J. Appl. Mech.,16, 277–282 (1949).Google Scholar
  3. 3.
    R. I. Nigmatulin,Dynamics of Multiphase Media, Part 1, Hemisphere Publ., New York (1991).Google Scholar
  4. 4.
    D. F. Gaitan, L. A. Crum, R. A. Roy, and C. C. Church, “Sonoluminescence and bubble dynamics for a single, stable cavitation bubble,”J. Acoust. Soc. Amer.,91, 3166–3172 (1992).CrossRefADSGoogle Scholar
  5. 5.
    L. A. Crum, “Sonoluminescence, sonochemistry, and sonophysics,”J. Acoust. Soc. Amer.,95, No. 1, 559–562 (1994).CrossRefADSGoogle Scholar
  6. 6.
    R. Löfstedt, B. P. Barber, and S. J. Putterman, “Towards a hydrodynamic, theory of sonoluminescence,”Phys. Fluids,5, No. 11, 2911–2928 (1993).MATHADSCrossRefGoogle Scholar
  7. 7.
    R. I. Nigmatulin, V. Sh. Shagapov, N. K. Vakhitova, and R. T. Lékhi, Jr., “Method of superstrong compression of a gaseous bubble in a fluid by nonperiodic vibrations of moderate-amplitude pressure,”Dokl. Ross. Akad. Nauk,341, No. 1, 37–41 (1995).MATHGoogle Scholar
  8. 8.
    R. I. Nigmatulin, I. Sh. Akhatov and N. K. Vakhitova, “Compressible fluid in gas bubble dynamics,”Dokl. Ross. Akad. Nauk,348, No. 6, 768–771 (1996).MathSciNetGoogle Scholar
  9. 9.
    C. C. Wu and P. H. Roberts, “Shock wave propagation in a sonoluminescencing gas bubble,”Phys. Rev. Lett.,70, 3424–3427 (1993).CrossRefADSGoogle Scholar
  10. 10.
    L. Kondic, J. I. Gersten, and C. Yuan., “Theoretical studies of sonoluminescence radiation: Radiative transfer and parametric dependence,”Phys. Rev. E,52, 4976–4990 (1995).CrossRefADSGoogle Scholar
  11. 11.
    A. A. Aganin and M. A. Il’gamov, “Specific features of calculation of nonlinear spherical waves using the Riemann problem,” in:Modeling of Dynamic Processes in Continuum Media (collected scientific paper) [in Russian], Izd. Kazan’ Mat. Ob., Kazan’ (1997), pp. 108–193.Google Scholar
  12. 12.
    W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond somoluminescence,”Phys. Fluids,6, No. 9, 2979–2985 (1994).CrossRefADSGoogle Scholar
  13. 13.
    W. F. Non, “Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux,”J. Comput. Phys.,72, 78–120 (1978).ADSGoogle Scholar
  14. 14.
    L. D. Landau and E. M. Lifshits,Theoretical Physics, Vol. 4:Hydrodynamics [in Russian], Nauka, Moscow (1988).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. A. Aganin
  • M. A. Il’gamov

There are no affiliations available

Personalised recommendations