Advertisement

Conditions of bubble formation in the intergranular layer of a glass phase in ceramics sintering

  • D. N. Karpinskii
  • G. I. Panchikhina
Article
  • 40 Downloads

Abstract

Calculation results for the evolution of the gas-concentration distribution in the intergranular layer of a glass phase cooling from the sintering temperature to room temperature are presented. The calculations are performed for two stages of cooling of the glass phase. The calculation results suggest that gas dissolution in the intergranular layer of the glass phase leads to substantial softening of the conditions of bubble formation in it, and the second (low-temperature) stage of cooling makes a major contribution to the saturation of the glass phase with the gas.

Keywords

Fracture Toughness Hydrogen Embrittlement Bubble Formation Glass Phase Piezoelectric Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Zatsarinnyi,Strength of Piezoelectric Ceramics [in Russian], Izd. Rostov Univ., Rostov-on-Don (1978).Google Scholar
  2. 2.
    G. G. Pisarenko,Strength of Piezoelectric Ceramics [in Russian], Naukova Dumka, (1987).Google Scholar
  3. 3.
    A. V. Belyaev, D. N. Karpinskii, S. O. Kramarov, and I. A. Parinov, “Numerical simulation of microstructure formation and fracture toughness of piezoelectric ceramics,”Izv. Sev.-Kavk. Nauch. Tsentra Vyssh. Shk., Estestv. Nauki, No. 4, 66–70 (1989).Google Scholar
  4. 4.
    D. N. Karpinsky and I. A. Parinov, “Computer simulation of sintering and piezoceramics fracture toughness,” in:Electronic Ceramics—Production and Properties. Proc. Int. Conf., Riga, Part 1 (1990), pp. 100–102.Google Scholar
  5. 5.
    D. N. Karpinskii and I. A. Parinov, “Calculation of fracture toughness of ceramics by numerical experiment,”Probl. Prochn., No. 7, 34–37 (1991).Google Scholar
  6. 6.
    D. N. Karpinskii and I. A. Parinov, “Computer simulation of microstructure formation in piezoelectric ceramics,”Prikl. Mekh. Tekh. Fiz., No. 1, 150–154 (1992).Google Scholar
  7. 7.
    Ya. E. Geguzin,Physics of Sintering, [in Russian], Nauka, Moscow (1984).Google Scholar
  8. 8.
    G. M. Flidlider, V. L. Balkevich, and L. A. Kholodnova, “Effect of glass additives on the properties of piezoelectric ceramics under hot pressing,”Steklo Keram., No. 10, 30–32 (1977).Google Scholar
  9. 9.
    F. F. Lange, “Non-elastic deformation of polycrystals with a liquid boundary phase,” in: R. C. Bradt and R. Tressler (eds.),Deformation of Ceramic Materials, Plenum Press, New York, (1974), pp. 361–381.Google Scholar
  10. 10.
    J. C. Fisher “The fracture of liquids,”J. Appl. Phys.,19, 1062–1070 (1948).CrossRefADSGoogle Scholar
  11. 11.
    M. I. Kornfel’d,Elasticity and Strength of Liquids [in Russian], Gostekhteorizdat, Moscow-Leningrad (1951).Google Scholar
  12. 12.
    R. E. Appel, “Tensile strength of liquids,”Sci. Am.,227, 58–71 (1972).CrossRefGoogle Scholar
  13. 13.
    J. I. Marion, A. G. Evans, M. D. Drory, and D. R. Clarke, “High-temperature failure initiation in liquid phase sintered materials,”Acta Metall.,31, No. 10, 1145–1457 (1983).Google Scholar
  14. 14.
    G. J. Rodin, “Stress transmission in polycrystals with frictionless grain boundaries,”J. Appl. Mech.,62, No. 1, 1–6 (1995).MATHGoogle Scholar
  15. 15.
    V. T. Slavyanskii,Gases in Glass [in Russian], Oborongiz, Moscow (1957).Google Scholar
  16. 16.
    V. T. Slavyanskii, “Gases in glass,” in: L. I. Demkina (ed.),Physicochemical Fundamentals of the Production of Optical Glass [in Russian], Khimiya, Leningrad (1976), pp. 367–389.Google Scholar
  17. 17.
    B. A. Kolachev,Hydrogen Embrittlement of Metals [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  18. 18.
    L. I. Kunin, A. M. Golovin, Yu. N. Surovoi, and V. M. Khokhrin,Problems of Degassing of Metals (Phenomenological Theory) [in Russian], Nauka, Moscow (1972).Google Scholar
  19. 19.
    O. V. Mazurin,Glass Transition [in Russian], Nauka, Leningrad (1986).Google Scholar
  20. 20.
    O. V. Mazurin, G. P. Nikolina, and L. M. Petrovskaya,Calculation of Glass Toughness (Manual) [in Russian], Leningrad Technol. Inst., Leningrad (1988).Google Scholar
  21. 21.
    S. D. Gertsriken and I. Ya. Dekhtyar,Solid-State Diffusion in Metals and Alloys [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  22. 22.
    O. V. Mazurin, M. V. Strel’tsina, and T. P. Shvaiko-Svaikovskaya,Properties of Glasses and Glass-Forming Melts [in Russian], Vols. 1–5, Nauka, Leningrad (1973–1987).Google Scholar
  23. 23.
    A. I. Shutov and N. V. Lalykin, “Algorithm for determining instantaneous and residual hardening stresses,”Steklo Keram., No. 11, 15–16 (1991).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • D. N. Karpinskii
  • G. I. Panchikhina

There are no affiliations available

Personalised recommendations