Correlation between theoretical and experimental solitary waves

  • V. I. Bukreev
Article

Abstract

Experimental data on surface solitary waves generated by five methods are given. These data and literature information show that at amplitudes 0.2<a/h<0.6 (h is the initial depth of the liquid), experimental solitary waves are in good agreement with their theoretical analogs obtained using the complete model of liquid potential flow. Some discrepancy is observed in the range of small amplitudes. The reasons why free solitary waves of theoretically limiting amplitude have not been realized in experiments are discussed, and an example of a forced wave of nearly limiting amplitude is given. The previously established fact that during evolution from the state of rest, undular waves break when the propagation speed of their leading front reaches the limiting speed of propagation of a solitary wave is confirmed.

Keywords

Solitary Wave Propagation Speed Vertical Plate Forced Wave Wave Crest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Daily and S. C. Stephan, “The solitary wave. Its celerity, profile, internal velocities, and amplitude attenuation in a horizontal smooth channel,” in:Proc. 3rd Conf. Coastal Eng., Univ. of California, Berkley (1952), pp. 13–30.Google Scholar
  2. 2.
    J. Boussinesq, “Theorie des onde et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement partielles de la surface au fond,”J. Math. Liouvills, France,17, 55 (1872).MATHGoogle Scholar
  3. 3.
    Lord Rayleigh, “On waves,”Philos. Mag., Ser. 5,1, 257–279 (1876).Google Scholar
  4. 4.
    M. S. Longuet-Higgins, “On the mass, momentum, energy, and circulation of a solitary wave,”Proc. Roy. Soc., London,A337, 1–13 (1974).MATHMathSciNetADSGoogle Scholar
  5. 5.
    M. S. Longuet-Higgins and J. D. Fenton, “On the mass, momentum, energy, and circulation of a solitary wave. II,”Proc. Roy. Soc., London,A340, 471–493 (1974).MATHMathSciNetADSCrossRefGoogle Scholar
  6. 6.
    C. J. Amick and J.F. Toland, “On solitary water-waves of finite amplitude,”Arch. Rat. Mech. Anal.,76, No. 1, 9–95 (1981).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. I. Plotnikov, “Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals,”Izv. Akad. Nauk SSSR, Ser. Mat.,55, No. 2, 339–366 (1991).MATHGoogle Scholar
  8. 8.
    L. V. Ovsyannikov, “On the asymptotic representation of solitary waves,”Dokl. Akad. Nauk SSSR,318, No. 3, 556–559 (1991).MATHMathSciNetGoogle Scholar
  9. 9.
    T. Maxworthy, “Experiments on the collision between two solitary waves,”J. Liquid Mech.,76, Part 1, 177–185 (1976).ADSGoogle Scholar
  10. 10.
    M. A. Losada, C. Vidal, and R. Medina, “Experimental study of the evolution of a solitary wave at an abrupt junction,”J. Geophys. Res.,4, No. 10, 14.557–14.566 (1989).ADSGoogle Scholar
  11. 11.
    F. J. Seabra-Santos, D. R. Renouard, and A. M. Temperville, “Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle,”J. Liquid Mech.,176, 117–134 (1987).ADSGoogle Scholar
  12. 12.
    T. Sakagushi, M. Ozawa, R. Takahashi, and Y. Shiomi, “Liquid velocity measurement of solitary wave by LDV,”Mem. Fac. Kobe Univ., No. 33, 33–66 (1986).Google Scholar
  13. 13.
    M. J. Cooker, D. H. Peregrine, C. Vidal, and J. W. Dold, “The interaction between a solitary wave and a submerged semicircular cylinder,”J. Liquid Mech.,215, 1–22 (1990).MATHMathSciNetADSGoogle Scholar
  14. 14.
    V. I. Bukreev, E. M. Romanov, and N. P. Turanov, “Breaking of gravity waves in the neighborhood of the second critical velocity of their propagation,”Prikl. Mekh. Tekh. Fiz.,39, No. 2, 52–58 (1997).Google Scholar
  15. 15.
    J. S. Russel, “Report on waves,” in:Rep. 14th Meeting of the British Assoc. for the Advancement of Sci., John Murrey, London (1845), pp. 311–390.Google Scholar
  16. 16.
    J. W. Hammack and H. Segur, “The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments,”J. Liquid Mech.,65, Part 2, 289–314 (1974).MATHMathSciNetADSGoogle Scholar
  17. 17.
    V. I. Bukreev and A. V. Gusev, “Gravity waves generate by a body falling on shallow water,”Prikl. Mekh. Tekh. Fiz.,37, No. 2, 90–98 (1996).Google Scholar
  18. 18.
    B. de St. Venant, “Theorie du mouvement non permanent des eaux, avec application aux cures rivieres et a l’introduction des marees dans leur lit,”Compt. Rend.,73, 147 (1871).MATHGoogle Scholar
  19. 19.
    J. McCowan, “On the solitary waves,”Philos. Mag., Ser. 5,2, 45–48 (1891).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. I. Bukreev

There are no affiliations available

Personalised recommendations