Experimental study of variations in the thickness of a liquid film moving over the inner surface of a rotating cylinder

  • V. É. Borzykh
  • G. G. Volokitin
  • S. K. Karandashov
  • A. M. Shilyaev
Article
  • 50 Downloads

Abstract

The behavior of a liquid layer moving in a mass-force field on the inner surface of a rotating vertical cylinder is studied experimentally. Free-surface profiles of the liquid moving under these conditions are constructed. An empirical dependence for the mean thickness of the film is obtained in criterial forms. The presence of a hydraulic jump in the lower part of the cylinder behind the entrance of the liquid onto the vertical surface is revealed.

Keywords

Liquid Film Liquid Layer Hydraulic Jump Vertical Cylinder Branch Pipe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Gol'dshtik,Vortex Flows [in Russian], Nauka, Novosibirsk (1981).Google Scholar
  2. 2.
    Yu. F. Dityatkin, L. A. Klyachko, B. V. Novikov, and V. I. Yagodnin,Spraying of Liquids [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  3. 3.
    T. E. Leppert and B. G. Nimmo, “Laminar film condensation on surfaces normal to body or inertial forces,”Trans. ASME, Ser. C, J. Heat, Transfer,90, No. 1 (1968).Google Scholar
  4. 4.
    S. N. Postnikov, “Film flow over the inner surface of a rotating cylinder,” in:Conjugate Problems of Mechanics and Ecology: Proc. Int. Conf. (Tomsk, Sept.–Oct., 1996), Tomsk Univ., Tomsk (1996), p. 154.Google Scholar
  5. 5.
    Ě. Bass, “Strömungen im, fliehkraftfeld. I,” in:Periodica Polytechnica, Eng. Maschinen Burwesen (1959), pp. 321–340.Google Scholar
  6. 6.
    Š. Bass, “Strömungen im fliehkraftfeld. II,” in:Periodica Polytechnica, Eng. Maschinen Burwesen (1960), pp. 41–61.Google Scholar
  7. 7.
    V. M. Olevskii (ed.), “Film heat- and mass-exchange apparatus,” in:Processes and Apparatus of Chemical and Petrochemical Technologies [in Russian], Khimiya, Moscow (1988).Google Scholar
  8. 8.
    G. G. Volokitin, V. É. Borzykh, S. O. Unzhakov, and A. M. Shilyaev, “Plasma technologies of mineral fiber production from soot wastes of industry,”Sib. Fiz. Tekh. Zh., No. 1, 74–78 (1993).Google Scholar
  9. 9.
    K. É. Goryainov and G. K. Goryainova,Technology of Heat-Insulating Materials and Articles [in Russian], Stroiizdat, Moscow (1982).Google Scholar
  10. 10.
    A. E. Kulago, “Hydrodynamic and thermal processes in the fiber-formation mechanism,” Doct. Dissertation in Tech. Sci., Moscow (1984).Google Scholar
  11. 11.
    G. I. Barenblatt,Similarity, Self-Similarity, and Intermediate Asymptotic Relations [in Russian], Gidrometeoizdat, Moscow (1982).Google Scholar
  12. 12.
    S. N. Sautin and A. E. Punin,World of Computers and Chemical Technology, [in Russian], Khimiya, Leningrad (1991).Google Scholar
  13. 13.
    V. E. Nakoryakov, B. G. Pokusaev, E. N. Troyan, and S. V. Alekseenko, “Flow of thin liquid films” in:Wave Processes in Two-Phase Systems [in Russian], Inst. of Thermal Phys., Novosibirsk (1975), pp. 129–206.Google Scholar
  14. 14.
    A. D. D. Craik, R. G. Latham, M. J. Fawkes, and P. W. F. Gribbon, “The circular hydraulic jump,”J. Fluid Mech.,112, 347–362 (1981).CrossRefADSGoogle Scholar
  15. 15.
    Kh. P. Greenspan,The Theory of Rotating Fluids, Cambridge Univ. Press, London (1968).MATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. É. Borzykh
  • G. G. Volokitin
  • S. K. Karandashov
  • A. M. Shilyaev

There are no affiliations available

Personalised recommendations