Decay of a centered prandtl-mayer compression wave in a steady gas flow

  • A. V. Omel'chenko
  • V. N. Uskov
Article
  • 46 Downloads

Abstract

Discontinuity decay at a singular point of a centered compression wave is considered. Analytical solutions are given that allow one to determine the type of reflected discontinuity that issues from the point of decay and the boundaries of ranges of parameters within which a solution of the problem exists.

Keywords

Mach Number Rarefaction Wave Compression Wave Velocity Head Tangential Discontinuity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshits,Hydrodynamics, [in Russian], Nauka, Moscow (1988).MATHGoogle Scholar
  2. 2.
    G. S. Roslyakov, “Interaction of plane unidirectional shocks”, in:Numerical Methods in Gas Dynamics [in Russian], Izd. Moscow Univ., Moscow (1965), pp. 28–51.Google Scholar
  3. 3.
    G. S. Roslyakov, A. L. Starykh, and V. N. Uskov, “Interference of stationary unidirectional shocks”,Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 143–152 (1985).Google Scholar
  4. 4.
    A. L. Adrianov, A. L. Starykh, and V. N. Uskov,Interference of Stationary Gas-Dynamic Discontinuities, Nauka, Novosibirsk (1995).Google Scholar
  5. 5.
    V. I. Kireev and A. S. Voinovskii,Numerical Modeling of Gas-Dynamic Flows [in Russian], Izd. Mosk. Aviats. Inst., Moscow (1991).Google Scholar
  6. 6.
    A. V. Omel'chenko and V. N. Uskov, “Optimal shock-wave systems”,Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 118–126 (1995).MATHGoogle Scholar
  7. 7.
    G. G. Chernyi,High Supersonic Velocity Gas Flows [in Russian], Fizmatgiz, Moscow (1959).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. V. Omel'chenko
  • V. N. Uskov

There are no affiliations available

Personalised recommendations