Skip to main content
Log in

Wave processes and structure dynamics in inhomogenous media under pulsed loading

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. K. Kedrinskii, “Hydrodynamics of explosions,”Prikl. Mekh. Tekh. Fiz.,28, No. 4, 23–48 (1987).

    Google Scholar 

  2. A. V. Pinaev and A. I. Sychev, “Effects of gas and liquid properties on detonation-wave parameters in liquid-bubble systems,”Fiz. Goreniya Vzryva,23, No. 6, 76–83 (1987).

    Google Scholar 

  3. A. I. Sychev, “Detonation waves in multicomponent bubbly media,”Fiz. Goreniya Vzryva,29, No. 1, 110–117 (1993).

    MathSciNet  Google Scholar 

  4. A. I. Sychev, “Detonation waves in one- and multicomponent bubbly media,”Dokl. Ross. Akad. Nauk,334, No. 65, 586–588 (1994).

    Google Scholar 

  5. A. I. Sychev, “Energy limits for the existence of detonation waves in bubbly media,”Fiz. Goreniya Vzryva,30, No. 1, 86–91 (1994).

    MathSciNet  Google Scholar 

  6. A. I. Sychev, “Structure of bubble-detonation waves,”Fiz. Goreniya Vzryva,30, No. 4, 119–124 (1994).

    Google Scholar 

  7. A. I. Sychev, “The effect of bubble size on the detonation wave characteristics,”Fiz. Goreniya Vzryva,31, No. 5, 83–91 (1995).

    MathSciNet  Google Scholar 

  8. V. Yu. Liapidevskii, “On the velocity of bubble detonation,”Fiz. Goreniya Vzryva,26, No. 4, 138–140 (1990).

    Google Scholar 

  9. V. Yu. Liapidevskii, “Bubble detonation in a channel with elastic walls,”Fiz. Goreniya Vzryva,31, No. 3, 146–149 (1995).

    Google Scholar 

  10. A. V. Trotsyuk and P. A. Fomin, “Model of bubble detonation,”Fiz. Goreniya Vzryva,28, No. 4, 129–136 (1992).

    Google Scholar 

  11. V. K. Kedrinskii and Ch. L. Mader, “Accidental detonation in bubble liquids,” in: Proc. 16th Int. Symp. on Shock Tubes and Waves (Aachen, FRG, July 26–31, 1987), pp. 371–376.

  12. Ch. L. Mader, “Numerical modeling of detonation,” in:Los Alamos Ser. in Basic and Applied Sci., Univ. of California Press (1979).

  13. V. K. Kedrinskii, “Propagation of disturbances in liquid with gas bubbles,”Prikl. Mekh. Tekh. Fiz.,9, No. 4, 29–34 (1968).

    Google Scholar 

  14. V. K. Kedrinskii and Ch. L. Mader, “On the velocity of bubble detonation,” in: Proc. 13th Int. Symp. on Nonlinear Acoustics (Bergen, Norway, June 28–July, 2, 1993), pp. 442–447.

  15. A. I. Sychev and A. V. Pinaev, “Self-sustaining deformation in liquids with bubbles of explosive gas,”Prikl. Mekh. Tekh. Fiz.,27, No. 1, 133–138 (1986).

    Google Scholar 

  16. V. Sh. Shagapov and N. K. Vakhitova, “Waves in a bubble liquid in the presence of chemical reactions in the gas phase,” in: Proc. the 11th Int. Symp. on Nonlinear Acoustics (Novosibirsk, Aug. 24–28 1987), pp. 56–58.

  17. V. Kedrinskii and F. Zamaraev, “Wave amplification in chemically active bubble media,” in: Proc. 17th Int. Symp. on Shock Tubes and Waves (Bethlehem, USA, July 17–21, 1989), pp. 51–62.

  18. F. N. Zamaraev, V. K. Kedrinskii, and Ch. Mader, “Waves in a chemically active bubbled medium,”Prikl. Mekh. Tekh. Fiz.,90, No. 2, 20–26 (1990).

    Google Scholar 

  19. A. S. Besov, V. K. Kedrinskii, E. I. Pal'chikov, et al. “Microinhomogeneity structures and hysteresis effects in cavitating liquid,” in: Proc. 14th Int. Congress on Acoustics (Beijing, China, Sept. 3–10, 1992).

  20. A. S. Besov, V. K. Kedrinskii, I. Matsumoto, et al., “Structure of cavitating nuclei and anomalous properties of water,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Institute of Hydrodynamics, Novosibirsk,104 (1992), pp. 16–28.

    Google Scholar 

  21. V. K. Kedrinskii, V. A. Vshivkov, and G. I. Dudnikova, “Interaction of waves in chemically active bubble media,” in:IV Zababakhin Lectures, Proc. Int. Conf., Snezhinsk (1995), pp. 140–151.

  22. R. Barbone et al., “Explosive boiling of a depressurized volatile liquid,”Proc. IUTAM Symp. on Waves in Liquid-Gas and Liquid-Vapor Two-Phase Systems (Kyoto, May 9–13, 1994), Kluwer Acad. Publ., pp. 315–324.

  23. V. K. Kedrinskii, V. A. Vshivkov, G. I. Dudnikova, and Yu. I. Shokin, “Interaction of waves in chemically active bubble media,”Dokl. Ross. Akad. Nauk,349, No. 2, 185–188 (1996).

    Google Scholar 

  24. V. E. Dontsov, V. V. Kuznetsov, and V. E. Nakoryakov, “Propagation of compression waves in a porous fluid-saturated medium,”Prikl. Mekh. Tekh. Fiz.,29, No. 1, 120–130 (1988).

    Google Scholar 

  25. V. E. Dontsov, V. V. Kuznetsov, and V. E. Nakoryakov, “Pressure waves in a porous media saturated with a liquid with gas bubbles,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 85–92 (1987).

    Google Scholar 

  26. V. E. Nakoryakov, V. V. Kuznetsov, and V. E. Dontsov, “Pressure waves in saturated poroud media,”Int. J. Multiphase Flow,15, No. 6,857–875 (1989).

    MATH  Google Scholar 

  27. V. E. Nakoryakov, V. V. Kuznetsov, and V. E. Dontsov, “Pressure waves in porous media,” in: Proc. 11th Int. Symp. on Nonlinear Acoustics, Novosibirsk (1987), pp. 108–112.

  28. V. E. Dontsov, “Structure and dynamics of finite-amplitude pressure perturbations in a porous medium saturated with a liquid containing gas bubbles,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 80–83 (1992).

    MATH  Google Scholar 

  29. V. E. Dontsov and V. A. Maslov, “Structure and dynamics of the slow pressure wave in a porous medium saturated with a liquid containing gas bubbles,”Prikl. Mekh. Tekh. Fiz.,35, No. 1, 95–98 (1994).

    Google Scholar 

  30. V. E. Nakoryakov and V. E. Dontsov, “Finite amplitude pressure waves in nonlinear elastic porous media saturated with a liquid containing gas bubbles,”Dokl. Ross. Akad. Nauk,322, No. 3, 481–483 (1992).

    MATH  Google Scholar 

  31. V. E. Dontsov, V. E. Nakoryakov, and B. G. Pokusaev, “Propagation of pressure waves in a gassaturated porous medium,”Akust. Zh.,40, No. 4, 683–685 (1994).

    Google Scholar 

  32. V. E. Nakoryakov, V. E. Dontsov, and B. G Pokusaev, “The propagation of pressure waves in liquid with solid particles and gas bubbles,”Russ. J. Eng. Thermophys.,4, No. 2, 173–188 (1994).

    Google Scholar 

  33. V. E. Nakoryakov, V. E. Dontsov, and B. G. Pokusaev, “Pressure waves in liquid suspension with solid particles and gas bubbles,” in: Proc. 2nd Int. Conf. Multiphase Flow, Kyoto, Japan (1995), pp. PH2-11-PH2-17.

  34. V. E. Dontsov, V. E. Nakoryakov, and B. G. Pokusaev, “Pressure waves in liquid suspension with solid particles and gas bubbles,”Prikl. Mekh. Tekh. Fiz.,36, No. 1, 32–40 (1995).

    Google Scholar 

  35. V. E. Nakoryakov, V. E. Dontsov, and B. G. Pokusaev, “Pressure waves in liquid suspension with solid particles and gas bubbles,”Int. J. Multiphase Flow,22, No. 3, 417–429 (1996).

    Google Scholar 

  36. V. G. Gasenko, V. E. Dontsov, and V. V. Kuznetsov, and V. E. Nakoryakov, “Oscillating solitary waves in a liquid with gas bubbles,”Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. Tekh. Nauk,6, No. 21, 43–45 (1987).

    Google Scholar 

  37. V. E. Dontsov, V. V. Kuznetsov, P. G. Markov, and V. E. Nakoryakov, “Evolution of pressure waves of moderate intensity in a liquid with gas bubbles,”Akust. Zh.,33, No. 6, 1041–1044 (1987).

    Google Scholar 

  38. V. E. Dontsov, V. V. Kuznetsov, P. G. Markov, and V. E. Nakoryakov, “Propagation of pressure waves in a liquid with gas bubbles of two different sizez,”Akust. Zh.,35, No. 1, 157–159 (1989).

    Google Scholar 

  39. V. E. Nakoryakov, V. V. Kuznetsov, V. E. Dontsov, and P. G. Markov, “Pressure waves of moderate intensity in liquid with gas bubbles,”Int. J. Multiphase Flow.,16, No. 5, 741–749 (1990).

    Google Scholar 

  40. V. E. Nakoryakov, V. E. Dontsov, and P. G. Markov, “Moderate pressure waves in a liquid with gas bubbles,”Russ. J. Eng. Thermophys.,1, No. 1, 291–305 (1991).

    Google Scholar 

  41. V. E. Nakoryakov, V. E. Dontsov, and P. G. Markov, “Investigation of the behavior of gas bubbles in pressure waves of moderate intensity,”Dokl. Akad. Nauk SSSR,309, No. 4, 818–820 (1989).

    Google Scholar 

  42. V. E. Dontsov and P. G. Markov, “Investigation of the breakup of gas bubbles and its effect on the structure of moderate-intensity solitary pressure waves in a liquid with gas bubbles,”Prikl. Mekh. Tekh. Fiz.,32, No. 1, 45–49 (1991).

    Google Scholar 

  43. V. E. Nakoryakov and V. E. Dontsov, “Pressure waves interaction in a liquid with gas bubbles and bubble fragmentation,” in:Proc. Int. Symp. Two-Phase Flow Modeling and Experimentation, Vol. 2, Rome, Italy (1995), pp. 951–958.

  44. V. E. Nakoryakov, V. E. Dontsov, and P. G. Markov, “Interaction of moderate pressure waves in a liquid with gas bubbles,”Dokl. Akad. Nauk SSSR,313, No. 5, 1074–1077 (1990).

    Google Scholar 

  45. V. E. Dontsov and P. G. Markov, “Experimental study of the interaction of pressure waves of moderate intensity in a liquid with gas bubbles,”Prikl. Mekh. Tekh. Fiz.,32, No. 5, 83–87 (1991).

    Google Scholar 

  46. V. E. Dontsov and V. E. Nakoryakov, “Reflection of pressure waves at the interface between a liquid and a three-phase medium,”Russ. J. Eng. Thermophys.,5, No. 3, 237–248 (1995).

    Google Scholar 

  47. V. E. Dontsov, V. E. Nakoryakov, and B. G. Pokusaev, “Reflection of pressure waves at the interface between a liquid and a three-phase medium,”Akust. Zh., No. 6, 783–789 (1996).

    Google Scholar 

  48. V. E. Nakoryakov, B. G. Pokusaev, S. I. Lezhnin, and N. A. Pribaturin, “Shock waves structure and their propagation in two-phase slug flow,” in:Proc. 16th Int. Symp. on Shock Tubes and Waves (Aachen, FRG, July 26–31, 1987), Aachen (1987), pp. 305–309.

  49. V. E. Nakoryakov, B. G. Pokusaev, S. I. Lezhnin, and N. A. Pribaturin, “Wave pressures in two-phase slug flow boiling media,” in:Proc. 11th Int. Symp. on Nonlinear Acoustics (Novosibirsk, Aug. 24–28, 1987), Part 1, pp. 103–107.

  50. S. I. Lezhnin, I. I. Mullyadzhanov, V. E. Nakoryakov, et al., “The evolution of weakly linear perturbations in a slug formed of an air-water mixture,”Prikl. Mekh. Tekh. Fiz.,30, No. 6, 91–98 (1989).

    Google Scholar 

  51. V. E. Nakoryakov, B. G. Pokusaev, N. A. Pribaturin, et al., “Nonstationary wave processes in boiling media,” in:Adiabatic Waves in Liquid-Vapor Systems, Proc. IUTAM Symp. (Gottingen, Germany, Aug. 28–Sept. 1, 1989), Springer-Verlag, Berlin (1990), pp. 381–391.

    Google Scholar 

  52. B. G. Pokusaev, S. I. Lezhnin, and N. A. Pribaturin, “Waves in gas-liquid medium of slug structure,”Russ. J. Eng. Thermophys.,1, No 4, 259–290 (1991).

    Google Scholar 

  53. S. P. Aktershev and S. I. Lezhnin, “Waves in a nonuniform bubble medium with a low void fraction,”Russ. J. Eng. Thermophys.,2, No. 3, 213–230 (1992).

    Google Scholar 

  54. S. I. Lezhnin and S. P. Aktershev, “Dynamics of a vapor slug in a channel,”Teplofiz. Aeromekh.,1 No. 2, 97–110 (1994).

    Google Scholar 

  55. V. E. Nakoryakov, N. A. Pribaturin, S. I. Lezhnin, and B. G. Pokusaev, “Behavior of a vapor-liquid medium under nonstationary dynamic conditions,” in:Proc. 10th Int. Heat Transfer Conf., Vol. 3, Brighton (1994), pp. 389–393.

  56. S. I. Lezhnin and B. S. Zhakupov, “Evolution of pressure waves in vapor-liquid media of slug structure during phase transitions,”Teplofiz. Aeromekh.,2, No. 2, 133–144 (1995).

    Google Scholar 

  57. S. I. Lezhnin and B. S. Zhakupov, “Damage and collapse of a vapor slug under dynamic loading,”Teplofiz. Aeromekh.,2, No. 3, 271–280 (1995).

    Google Scholar 

  58. B. G. Pokusaev, S. I. Lezhnin, N. A. Pribaturin, et al., “Modeling the dynamics of formation and development of a vapor void in channels under loading,” in:Thermophys. Aspects of Safety, Proc. Int Conf. [in Russian], Vol. 2, Obninsk (1995), pp. 31–41.

  59. S. I. Lezhnin, “Growth of vapor voids in channels under dynamic loading,”Teplofiz. Aeromekh.,3, No. 2, 181–190 (1996).

    Google Scholar 

  60. B. G. Pokusaev, S. I. Lezhnin, and N. A. Pribaturin, “Wave pressures in vapor-liquid media with different internal structures,” in:Heat-and-Mass Exchange: Abstracts 3rd Int. Conf. (Minsk, May 20–24, 1996), Vol. 4, Part 1 (1996), pp. 190–193.

  61. V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, and N. A. Pribaturin, “The wave dynamics of a vapor-liquid medium,”Int. J. Multiphase Flow,14, No. 6 655–677 (1988).

    Google Scholar 

  62. B. G. Pokusaev, E. S. Vasserman, I. I. Mullyadzhanov, and N. A. Pribaturin, “Collapse and breakup of bubbles during propagation of pressure waves in a two-phase medium,” in:Unsteady Processes in Two-Phase Flows (Collected scientific papers) [in Russian], Inst. of Thermal Phys., Novosibirsk (1989), pp. 3–27.

    Google Scholar 

  63. B. G. Pokusaev, N. A. Pribaturin, and E. S. Vasserman, “Dynamics of shock-wave propagation in a bubble vapor-liquid medium,” in:Problems of Hydrodynamics and Heat Exchange in Atomic Power Engineering: Materials Int. School-Seminar, Inst. Heat- and Mass Transfer, Belarus Acad. of Sci., Minsk (1989), pp. 36–44.

  64. V. E. Nakoryakov, E. S. Vasserman, B. G. Pokusaev, and N. A. Pribaturin, “Increase in shock-wave amplitude in a vapor-liquid bubble medium,”Teplofiz. Vys. Temp.,32, No. 3, 411–417 (1994).

    Google Scholar 

  65. B. G. Pokusaev and N. A. Pribaturin, “Dynamics of shock wave propagation and interphase process in liquid-vapor media,” in: Proc. 7th Int. Meeting on Nuclear Reactor Thermal-Hydraulics “NURETH-7,” USA (1995), pp. 45–55.

  66. V. E. Nakoryakov, B. G. Pokusaev, N. A. Pribaturin, and I. I. Mullyadzhanov, “Interaction between a shock wave and a gas slug,” in:AIP Conf. Current Topic in Shock Waves, New York (1990), pp. 915–920.

  67. V. E. Nakoryakov, B. G. Pokusaev, N. A. Pribaturin, and I. I. Mullyadzhanov, “Interaction between a shock wave and a gas slug,”Dokl. Akad. Nauk SSSR,311, No. 4, 826–830 (1990).

    Google Scholar 

  68. B. G. Pokusaev and N. A. Pribaturin, “Influence of perturbation pressure on the slug flow stability,” in:Multiphase Flow'91: Proc. Int. Conf., Vol. 2, Tsukuba (1991), pp. 199–202.

  69. V. E. Nakoryakov, B. G. Pokusaev, and N. A. Pribaturin, “Interphase heat transfer in nonstationary vapor-liquid flows”Heat Transfer,5, 317–322 (1990).

    Google Scholar 

  70. B. G. Pokusaev, N. A. Pribaturin, Z. S. Mesarkishvili, and O. Yu. Schetinsky, “Condensation study in a vertical slug regime,”Russ. J. Eng. Thermophys.,1, No. 4, 333–357 (1991).

    Google Scholar 

  71. B. G. Pokusaev, N. A. Pribaturin, and E. S. Vasserman, “Increase in amplitude of shock waves of moderate intensity in a vapor-liquid medium. Feature of slug flow,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,100 (1991), pp. 176–185.

  72. B. G. Pokusaev, N. A. Pribaturin, and E. S. Vasserman, “Moderate shock wave propagation in vapor-liquid slug flow,” in:Proc. 18th Int. Symp. on SWST, Vol. 1, Sendai, Japan (1991), pp. 62–65.

  73. N. A. Pribaturin, “Amplification of shock waves and failure of vapor- and gas-liquid media,” Doct. Dissertation in Tech. Sci., Novosibirsk (1994).

  74. S. V. Stebnovskii and N. N. Chernobaev, “Effect of the dynamics of loading of a fluid volume on the mechanism of its failure,”Prikl. Mekh. Tekh. Fiz.,28, No. 5, 134–138 (1987).

    Google Scholar 

  75. S. V. Stebnovskii, “Mechanism of pulsed breakdown of a liquid volume,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 126–132 (1989).

    Google Scholar 

  76. V. K. Kedrinskii, A. R. Berngardt, and N. N. Chernobaev, “Behavior of a liquid under dynamic loading,” in:Proc. IUTAM Symp. on Waves in Liquid-Gas and Liquid-Vapor Two-Phase Systems, Kluwer Acad. Publ., Dordrecht (1995), pp. 429–438.

    Google Scholar 

  77. V. K. Kedrinskii, “Hydrodynamic shock tubes and their applications,” in:Proc. 18th Int. Symp. on Shock Waves, Vol. 2, Sendai, Japan (1991), pp. 1039–1044.

  78. V. K. Kedrinskii, “Nonlinear problems of cavitation failure of liquids under explosive loading (review),”Prikl. Mekh. Tekh. Fiz.,34, No. 3, 74–91 (1993).

    Google Scholar 

  79. V. K. Kedrinskii, “Liquid fracture at explosive loading,” in:Proc. 19th Int. Symp. on Shock Waves, Vol. 3, Marseilles (1995), pp. 233–238.

  80. A. R. Berngardt, V. K. Kedrinskii, and E. I. Pal'chikov, “Evolution of the internal structure of a liquid destruction zone under impulsive loading,”Prikl. Mekh. Tekh. Fiz.,36, No. 2, 99–105 (1995).

    Google Scholar 

  81. S. V. Stebnovskii, “Shear elasticity of liquids containing bubbles,”Fiz. Goreniya Vzryva,26, No. 3, 127–128 (1990).

    Google Scholar 

  82. S. V. Stebnovskii, “Instability of bubble structures in a liquid medium,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,100 (1991), pp. 192–201.

  83. V. K. Kedrinskii and N. N. Chernobaev, “One-dimensional projection of a liquid shell by an explosive charge,”Prikl. Mekh. Tekh. Fiz.,33, No. 6, 90–96 (1992).

    Google Scholar 

  84. V. K. Kedrinskii, “Bubbly cavitation in intense rarefaction waves and its effects (plenary lecture),” in: Proc. 20th Int. Symp. on Shock Waves, Pasadena (1995).

  85. V. K. Kedrinskii, “A role of cavitation effects in mechanisms of destruction and explosive processes,”J. Shock Waves,7, No. 2, 63–76 (1997).

    ADS  Google Scholar 

  86. V. K. Kedrinskii, “Role of bubbly cavitation in mechanisms of fracture,” in: Abstr. 19th Int. Congress on Theor. and Appl. Mechanics, Kyoto, Japan, Aug. 25–31, 1996.

  87. V. K. Kedrinskii, A. S. Besov, and I. É. Gutnik, “Inversion of a two-phase fluid under dynamic loading,”Dokl. Ross. Akad. Nauk,352, No. 4, 477–479 (1997).

    Google Scholar 

  88. S. V. Stebnovskii, “Behavior of suspensions under dynamic loading,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 68–77 (1994).

    Google Scholar 

  89. S. V. Stebnovskii, “On building a rheological model of cavitating dispersed liquid media,”Prikl. Mekh. Tekh. Fiz.,37, No. 1, 129–138 (1996).

    Google Scholar 

  90. S. V. Stebnovskii, “A rheological model of volume extension of Newtonian liquids,”Prikl. Mekh. Tekh. Fiz.,39, No. 1 (1998).

    Google Scholar 

  91. S. V. Stebnovskii “Axisymmetrical explosive loading of cylindrical liquid volumes,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,99 (1990), pp. 110–116.

  92. S. V. Stebnovskii, “Dynamics of formation of parameters of a gas-droplet flow under explosive dispersion of a liquid volume,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,104 (1992), pp. 40–75.

  93. S. V. Stebnovskii, “Particle-size analysis of gas-droplet systems formed under explosive fracture of liquid volumes,”ibid. Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,104 (1992), pp. 76–95.

  94. I. G. Gets and V. K. Kedrinskii, “Dynamics of explosive loading for a finite volume of a dense two-phase mixture,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 120–125 (1989).

    Google Scholar 

  95. V. K. Kedrinskii, “Propagation of disturbances in a liquid containing gas bubbles,” Candidate's Dissertation in Phys.-Math. Sci., Novosibirsk (1968).

  96. V. K. Kedrinskii, “Shock waves in a liquid containing gas bubbles,”Fiz. Goreniya Vzryva,16, No. 5, 14–15 (1980).

    ADS  Google Scholar 

  97. O. G. Derzho and N. V. Malykh, “Formation of strong pressure pulses reflected from water-bubble layers,”Archive Mech.,42, Nos. 4 and 5, 463–473 (1990).

    Google Scholar 

  98. N. V. Malykh, “Wave form of short shock waves reflected from bubble layers in water,”J. Phys. IV, Colloque C5,4, 1121–1124 (1994).

    Google Scholar 

  99. N. V. Malykh “‘Resonance solitons’ in a bubbly liquid,” in:Proc. 19th Int. Symp. on Shock Waves, Vol. 3, Marseilles, France (1993), pp. 147–150.

  100. V. K. Kedrinskii and S. I. Plaksin, “Rarefaction wave structure in a cavitating liquid,” in:Proc. 11th Int. Symp. on Nonlinear Acoustics, Vol. 1, Novosibirsk, USSR (1987), pp. 51–55.

  101. A. S. Besov and V. K. Kedrinskii, “Dynamics of bubbly clusters and free surfaces at shock wave reflection,” in: Proc. IUTAM Symp. on Bubble Dynamics and Interface Phenomena (Birmingham, U.K., Sept. 6–9, 1993), pp. 93–103.

  102. A. S. Besov, V. K. Kedrinskii, and E. I. Pal'chikov, “On threshold cavitation effects in pulse rarefaction waves,”Pis'ma Zh. Tekh. Fiz.,15, No. 16 (1989).

    Google Scholar 

  103. A. S. Besov, V. K. Kedrinskii, and E. I. Pal'chikov, “On threshold cavitation effects in pulse rarefaction waves,” in:Proc. 13th Int. Congress on Acoustics (Beograd, Yugoslavia, Aug. 26–30, 1989), Vol. 1, pp. 355–358.

  104. V. K. Kedrinskii and V. A. Stepanov, “Cavitation effects in thin films,” in: Proc. 12th Int. Symp. on Nonlinear Acoustics, Austin (1990), pp. 470–475.

  105. V. K. Kedrinskii, “Two-phase models in problems of physical acoustics,” in:Boundary-Value Problems of Mathematical Physics (Collection of papers) [in Russian], Naukova Dumka, Kiev (1990), pp. 94–110.

    Google Scholar 

  106. V. K. Kedrinskii, “Bubble cluster, cumulative jets, and cavitation erosion,”Prikl. Mekh. Tekh. Fiz.,37, No. 4, 22–31 (1996).

    Google Scholar 

  107. V. K. Kedrinskii, “On relaxation of tensile stresses in cavitating liquids,” in:Proc. 13th Int. Congress on Acoustics (Beograd, Yugoslavia, Aug. 26–30, 1989), Vol. 1, pp. 327–330.

  108. V. K. Kedrinskii, “Hydrodynamics of explosion: experiment and models,” in: Proc. IUTAM Symp. on Adiabatic Waves in Liquid-Vapor Systems (Goettingen, Aug. 28–Sept. 1, 1989), pp. 395–405.

  109. S. P. Kiselev, G. A. Ruev, A. P. Trunev, et al.,Shock-Wave Processes in Two-Component and Two-Phase Media [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  110. S. P. Kiselev, “An elastoplastic model of deformation of a porous material,” in:Filtration of Multiphase Systems [in Russian], Inst. of Theor. and Appl. Mech., Novosibirsk (1991).

    Google Scholar 

  111. S. P. Kiselev, “Shock-wave processes in an elastoplastic porous medium,” in: Abstracts of 8th All-Union Conf. on Theoretical and Applied Mechanics, Moscow (1991).

  112. S. P. Kiselev and V. M. Fomin, “Model of a porous material considering the plastic zone near the pore,”Prikl. Mekh. Tekh. Fiz.,34, No. 6, 125–133 (1993).

    MATH  MathSciNet  Google Scholar 

  113. S. P. Kiselev and V. M. Fomin, “Modeling of shock-wave processes in elastoplastic porous media,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comp. Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,5, No. 3 (1991), pp. 40–75.

  114. V. M. Fomin and S. P. Kiselev, “Shock wave processes in porous elastoplastic materials,” in:Shock Waves, Proceedings, Vol. 1, Sendai, Japan (1991).

  115. S. P. Kiselev and V. M. Fomin, “Shock wave processes in porous elastoplastic materials,” in:Problems of Protection of the Earth from Collision with Hazardous Cosmic Objects (SPE-94): Abstracts of Int. Conf., Part 2, Snezhinsk (1994).

  116. S. P. Kiselev, “Numerical modeling of propagation of elastoplastic waves in a porous material,” Preprint No. 6-94, Inst. of Theor. and Appl. Mech., Russ. Acad of Sci., Novosibirsk (1994).

    Google Scholar 

  117. S. P. Kiselev, “On propagation of a shock wave in a porous material upon collision of plates,”Fiz. Goreniya Vzryva,31, No. 4, 79–83 (1995).

    Google Scholar 

  118. S. P. Kiselev and V. M. Fomin, “A rarefaction shock wave in a porous material,”Dokl. Ross. Akad. Nauk,341, No. 5, 630–631 (1995).

    Google Scholar 

  119. S. P. Kiselev and V. M. Fomin, “A rarefaction shock wave in a porous material,”Prikl. Mekh. Tekh. Fiz.,37, No. 1, 28–35 (1996).

    MATH  Google Scholar 

  120. S. P. Kiselev and V. M. Fomin, “On the problem of formation of cold particle layer upon explosive compaction of powders, in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comp. Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,4, No. 6 (1990) pp. 49–53.

  121. V. E. Panin, M. P. Bondar', N. A. Kostyukov, et al., “Dynamic compaction of titanium mononickelide,”Izv. Vyssh. Uchebn. Zaved., Fiz.,30, No. 9, 35–39 (1987).

    Google Scholar 

  122. N. A. Kostyukov, “Structure of a flow of binary mixtures of solid particles under conditions of two-dimensional shock-wave loading,”Prikl. Mekh. Tekh. Fiz.,29, No. 3, 54–58 (1988).

    Google Scholar 

  123. N. A. Kostyukov, “Approximate calculation of the critical parameters of shock-wave reflection in condensed media,”Fiz. Goreniya Vzryva,24, No. 1, 72–75 (1988).

    Google Scholar 

  124. N. A. Kostyukov and F. A. Sagdiev, “Determination of critical SW reflection parameters in powder composite materials,”Fiz. Goreniya Vzryva,25, No. 1, 82–88 (1989).

    Google Scholar 

  125. Yu. V. Zagarin, G. E. Kuz'min, and I. V. Yakovlev, “Measurement of pressure and temperature with shock loading for porous composite materials,”Fiz. Goreniya Vzryva,25, No. 2, 129–133 (1989).

    Google Scholar 

  126. A. A. Vertman, O. G. Epanchintsev, Yu. I. Zvezdin, et al. “Preparation of high coercivity materials of the system Mn−Al−C by explosive compaction,”Fiz. Goreniya Vzryva,25, No. 6 120–124 (1989).

    Google Scholar 

  127. N. A. Kostyukov, “Physical causes and mechanisms of the formation of boundary regions in the two-dimensional explosive compaction of powder materials,”Prikl. Mekh. Tekh. Fiz.,32, No. 6 154–161 (1991).

    Google Scholar 

  128. N. A. Kostyukov and I. V. Yakovlev, “Powder material flow near impurity inclusions under shock loading,”Fiz. Goreniya Vzryva,28, No. 2, 109–111 (1992).

    Google Scholar 

  129. N. A. Kostyukov, G. E. Kuz'min, and V. M. Shatalin, “Powder material flow in the shock wave branching region,”Fiz. Goreniya Vzryva,30, No. 5, 118–122 (1994).

    Google Scholar 

  130. S. P. Kiselev, V. M. Fomin, and Yu. A. Shitov, “Numerical modeling of the recoil of a porous cylinder from a rigid obstacle,”Prikl. Mekh. Tekh. Fiz.,31, No. 3, 100–104 (1990).

    Google Scholar 

  131. A. I. Gulidov and I. I. Shabalin, “Numerical modeling algorithm for supercritical fracture upon collision of plates, in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comp. Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, No. 4 (1990).

  132. A. I. Gulidov, “Implementing computation processes and structure of data in numerical solution of dynamical problems of the mechanics of continuous media,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comp. Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,5, No. 3 (1991), pp. 127–141.

  133. A. M. Gladyshev, A. I. Gulidov, V. M. Kovenya, et al., “Explosive acceleration, aerodynamics, and impact of a solid body. Numerical experiment,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comp. Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, No. 2 (1991), pp. 7–19.

  134. A. I. Gulidov and I. I. Shabalin, “The method of free elements. Application to the solution of problems of fracture of elastoplastic bodies during collision,” Preprint No. 9-94, Inst. of Theor. and Appl. Mech., Sib. Div., Russ. Acad. of Sci. (1994).

  135. A. I. Gulidov and I. I. Shabalin, “The method of free elements for the solution of problems of high-velocity interaction of bodies,” in: IV Zababakhin Lectures, Abstracts of Int. Conf., Snezhinsk, Oct. 16–20, 1995.

  136. A. I. Gulidov and I. I. Shabalin, “Calculation of contact boundaries with allowance for friction in the dynamic interaction of deformable bodies, in:Numerical Solution of Elastic and Plastic Problems, Materials of 9th All-Union Conf., Novosibirsk (1988).

  137. A. I. Gulidov, G. A. Sapoznikov, and V. M. Fomin, “Numerical solutions of collision of high-speed bodies,” in:Proc. 2nd Japan-Soviet Union Joint Symp. on Computational Fluid Dynamics, Vol. 1, Tsukuba, Aug. 27–31, 1990.

  138. A. I. Gulidov, “Numerical simulation of high-velocity impact for a three-dimensional case,”Lavrent'ev Readings on Mathematics, Mechanics, and Physics: Abstracts of 4th Int. Conf. (Kazan', Russia, 3–7 July, 1995) [in Russian], Inst. of Hydrodynamics, Novosibirsk (1995).

    Google Scholar 

  139. A. A. Deribas, A. I. Gulidov, B. S. Zlobin, et al., “On the oblique collisions of the metallic plates at extreme conditions,” in: Proc. 13th Int. Conf. on High Pressure Science and Technology, Bangalor, India, Oct. 7–11, 1991.

  140. S. P. Kiselev and V. M. Fomin, “Accelerations of a shell under the action of detonation products with allowance for air counter pressure,” in:Physical Gas-Dynamics of Reacting Media [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  141. E. N. Sher, “Dynamic development of a radial crack zone during a camouflet explosion,”Prikl. Mekh. Tekh. Fiz.,29, No. 1, 164–167 (1988).

    MathSciNet  Google Scholar 

  142. A. G. Chernikov and E. N. Sher, “A quasi-static model for a camouflet explosion of a concentrated charge in a mass and in an individual block,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1990).

  143. E. N. Sher, “Dynamics of development of a grinding zone in an elastoplastic medium during a camouflet explosion,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1996).

  144. E. N. Sher, “Taking into account the dynamics in description of fracture of brittle media by an explosion of a cord charge,”Prikl. Mekh. Tekh. Fiz.,38, No. 3, 174–183 (1997).

    MATH  Google Scholar 

  145. G. V. Basheev, P. A. Martynyuk, and E. N. Sher, “Effect of the direction and magnitude of an external stress field on the trajectory of a star-shaped system of cracks,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 147–159 (1994).

    MATH  Google Scholar 

  146. P. A. Martynyuk and E. N. Sher, “Effect of the biaxial field of rock pressure on the shape of the fractured zone for an explosion of a cord charge in a brittle media,”Prikl. Mekh. Tekh. Fiz.,39, No. 1 (1998).

    Google Scholar 

  147. V. P. Efimov and E. N. Sher, “Calculation of rigid wedging parameters for a specimen with a cut,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1989).

  148. V. P. Efimov, P. A. Martynyuk, and E. N. Sher, “Consideration of the effect of vertical forces during wedging,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1992).

  149. T. A. Alekseeva and P. A. Martynyuk, “Paths of crack emergence on a free surface,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1991).

  150. P. A. Martynyuk and E. N. Sher, “Crack propagation near an annulus with allowance for the external field of compressing stresses,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1996).

  151. V. P. Efimov, P. A. Martynyuk, and E. N. Sher, “Emergence paths of cracks on a free surface during wedging,”Prikl. Mekh. Tekh. Fiz.,36, No. 6, 142–152 (1995).

    MATH  Google Scholar 

  152. S. N. Ishutkin, G. E. Kuz'min, and V. V. Pai, “Thermocouple measurement of metal temperature under pulsed deformation conditions,”Prikl. Mekh. Tekh. Fiz.,32, No. 1, 137–143 (1991).

    Google Scholar 

  153. V. S. Teslenko, A. I. Zhukov, and V. V. Mitrofanov, “Multizone electric-arc discharge in a liquid,”Pis'ma Zh. Tekh. Fiz.,21, No. 18, 20–26 (1995).

    Google Scholar 

  154. V. S. Teslenko, “Shock-acoustic breakdown in a liquid. Kinetics of induced acoustic dissipation during shock-wave focusing,”Pis'ma Zh. Tekh. Fiz.,20, No. 5, 51–56 (1994).

    Google Scholar 

  155. S. D. Gilev, “Electrical conductivity of highly porous aluminum under shock-wave loading,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,99 (1990), pp. 105–109.

  156. S. D. Gilev, “Electrical conductivity of a highly porous nickel sponge in a shock wave,”Zh. Tekh. Fiz.,65, No. 6, 84–93 (1995).

    Google Scholar 

  157. S. A. Zhdan, “Numerical modeling of the explosion of a high explosive charge in foam,”Fiz. Goreniya Vzryva,26, No. 2, 103–110 (1990).

    Google Scholar 

  158. V. P. Chistyakov, “Calculation of gas cumulative jet parameters,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,80 (1987), pp. 139–148.

  159. S. A. Kinelovskii and K. K. Maevskii, “Penetration of a strong barrier by a shaped-charge jet,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 150–156 (1989).

    Google Scholar 

  160. S. A. Kinelovskii, “Concept of elastic-inelastic interactions of jet flows and collision of jets of an ideal incompressible liquid,”Fiz. Goreniya Vzryva,30, No. 3, 75–86 (1994).

    Google Scholar 

  161. V. V. Pai, G. E. Kuz'min, and I. V. Yakovlev, “Approximate evolution of loading parameters in composite materials with strong shock waves,”Fiz. Goreniya Vzryva,31, No. 3, 134–138 (1995).

    Google Scholar 

  162. V. F. Nesterenko,Pulsed Loading of Heterogeneous Materials [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  163. R. I. Nigmatulin,Dynamics of Multiphase Media, Vols. 1 and 2, Hemisphere, New York (1991).

    Google Scholar 

  164. A. A. Gubaidullin and R. K. Gazizov, “Amplification of shock waves in a bubble liquid with a gas-concentration gradient,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 49–54 (1988).

    Google Scholar 

  165. R. I. Nigmatulin, V. Sh. Shagapov, and N. K. Vakhitova, “Manifestations of the compressibility of a carrier phase during shock-wave propagation in a bubble medium,”Dokl. Akad. Nauk SSSR,304, No. 5, 1077–1081 (1989).

    MATH  Google Scholar 

  166. R. I. Nigmatulin, V. Sh. Shagapov, and N. S. Khabeev, “Anomalous effects of composition in the acoustics of boiling solutions,”Dokl. Akad. Nauk SSSR,304, No. 6, 1323–1328 (1989).

    MATH  Google Scholar 

  167. V. Sh. Shagapov and N. K. Vakhitova, “Waves in a bubble system in the presence of gas-phase chemical reactions,”Fiz. Goreniya Vzryva,25, No. 6, 14–22 (1989).

    Google Scholar 

  168. A. A. Gubaidullin, “The peculiarity of nonlinear wave evolution in bubbly liquids,” in:Physical Acoustics: Fundamentals and Applications, Plenum Press, New York-London (1991), pp. 347–351.

    Google Scholar 

  169. A. A. Gubaidullin, “Shock wave phenomena in bubbly liquids,” in:Proc. 2nd Int. Conf. on Multiphase Flow, Vol. 1, Kyoto, Japan (1995), pp. PH2 and PH3-PHS.

  170. R. I. Nigmatulin, V. Sh. Shagapov, and N. K. Vakhitova, and R. Leikhi, “A method of ultrastrong compression of a gas bubble in a liquid by the aperiodic action of a moderate-amplitude pressure wave on the liquid,”Dokl. Ross. Akad. Nauk,341, No. 1, 37–41 (1995).

    MATH  Google Scholar 

  171. R. I. Nigmatulin, I. Sh. Akhatov, and N. K. Vakhitova, “Liquid compressibility in the dynamics of a bubble medium,”Dokl. Ross. Akad. Nauk,348, No. 6, 768–771 (1996).

    MathSciNet  Google Scholar 

  172. R. I. Nigmatulin, A. A. Gubaidullin, A. T. Akhmetov, et al., “Experimental and theoretical modeling of the effect of anomalous amplification of shock waves in highly viscous liquids,”Dokl. Ross. Akad. Nauk,346, No. 1, 46–50 (1996).

    Google Scholar 

  173. N. A. Gumerov, “Long waves of finite amplitude in polydispersed gas suspensions,”Prikl. Mekh. Tekh. Fiz.,31, No. 4, 157–161 (1990).

    Google Scholar 

  174. D. A. Gubaidullin and A. I. Ivandaev, “Dynamics of low-amplitude pulse waves in vapor-gas-droplet systems,”Prikl. Mekh. Tekh. Fiz.,32, No. 2, 108–113 (1991).

    Google Scholar 

  175. N. A. Gumerov, “Weakly linear oscillations of the radius of a vapor bubble in an acoustic field,”Prikl. Mat. Mekh.,55, No. 2, 256–263 (1991).

    MATH  Google Scholar 

  176. B. S. Kruglikov and A. G. Kutushev, “Attenuation of air shock waves by layers of dusty gas and lattices,”Prikl. Mekh. Tekh. Fiz.,29, No. 1, 51–57 (1988).

    Google Scholar 

  177. A. G. Kutushev and U. A. Nazarov, “Numerical modeling of nonstationary shock waves in vaporgas-droplet mixtures,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 67–75 (1992).

    MATH  ADS  Google Scholar 

  178. A. G. Kutushev and S. V. Rodionov, “Propagation of shock waves in polydisperse gas suspensions,”Prikl. Mekh. Tekh. Fiz.,34, No. 2, 24–31 (1993).

    MATH  Google Scholar 

  179. A. G. Kutushev and D. A. Rudakov, “Numerical study of the action of a shock wave on an obstacle screened by a layer of a porous powder material,”Prikl. Mekh. Tekh. Fiz.,34, No. 5, 25–31 (1993).

    MATH  Google Scholar 

  180. A. I. Ivandaev, A. G. Kutushev, and S. P. Rodionov, “Explosive generation of heterogeneous detonation waves in aerocolloids of a unitary fuel,”Fiz. Goreniya Vzryva,31, No. 3, 83–91 (1995).

    Google Scholar 

  181. A. I. Ivandaev, A. G. Kutushev, and D. A. Rudakov, “Numerical investigation of throwing of a powder layer by a compressed gas,”Fiz. Goreniya Vzryva,31, No. 4, 63–70 (1995).

    Google Scholar 

  182. A. G. Kutushev and O. N. Pichugin, “Influence of the spatial nonuniformity of particle distribution in a screening layer on the suppression of a detonation wave in a monofuel-air suspension,”Fiz. Goreniya Vzryva,32, No. 4, 107–109 (1996).

    Google Scholar 

  183. A. G. Kutushev and S. P. Rodionov, “Numerical study of shock initiation threshold of detonation burning in a monofuel gas suspension,”ibid. pp. 110–112.

    Google Scholar 

  184. A. G. Kutushev and O. N. Pichugin, “Mathematical modeling of dispersion of a compressed burning monofuel gas suspension in a shock tube,”Fiz. Goreniya Vzryva,32, No. 1, 85–95 (1996).

    Google Scholar 

  185. A. A. Gubaidullin and R. I. Nigmatulin, “Linear waves in saturated porous media,”Transp. Porous Media,9, No. 1 and 2, 135–142 (1992).

    Google Scholar 

  186. A. A. Gubaidullin and S. F. Urmancheev, “Compression waves in gas-saturated porous media,” in:Proc. 1st Russian National Conf. on Heat Exchange [in Russian], Vol. 7, Moscow (1994), pp. 71–77.

  187. A. A. Gubaidullin and O. Yu. Kuchugurina, “Spherical and cylindrical linear waves in liquidsaturated porous media,”Teplofiz. Vys. Temp.,32, No. 1, 108–115 (1995).

    Google Scholar 

  188. A. A. Gubaidullin and O. Yu. Kuchugurina, “One-dimensional linear waves with axial and central symmetries in saturated porous media,”Transp. Porous Media,22, No. 1, 73–90 (1996).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 38, No. 4, pp. 111–139, July–August, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kedrinskii, V.K. Wave processes and structure dynamics in inhomogenous media under pulsed loading. J Appl Mech Tech Phys 38, 598–624 (1997). https://doi.org/10.1007/BF02468107

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02468107

Keywords

Navigation