Skip to main content
Log in

Mechanics of solids at the Siberian division of the Russian academy of sciences in 1988–1997

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. D. Annin, A. F. Revuzhenko, and E. I. Shemyakin, “Deformed solid mechanics at the Siberian Division, Academy of Sciences of the USSR,”Prikl. Mekh. Tekh. Fiz.,28, No. 4, 66–86 (1987).

    Google Scholar 

  2. V. M. Zhigalkin, O. M. Usova, and E. I. Shemyakin, “Anisotropy of a reinforcing plastic material. Effect of loading history,” Preprint No. 34-36, Mining Institute, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1989).

    Google Scholar 

  3. I. É. Ginzburg, V. M. Zhigalkin, V. N. Semenov, and O. M. Usol'tseva, “The effect of complex loading with partial unloads on the character of steel reinforcement,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 3, 58–64 (1994).

    Google Scholar 

  4. I. É. Ginsburg, V. M. Zhigalkin, V. A. Kotrekhov et al., “Strength and deformability of zirconium alloy É-110 under simple and complex loadings,”Prikl. Mekh. Tekh. Fiz.,36, No. 5, 67–80 (1995).

    Google Scholar 

  5. V. M. Zhigalkin and B. A. Rychkov, “Anisotropy of orthotropic-material reinforcement,”ibid., pp. 81–86.(.

    Google Scholar 

  6. A. I. Chanyshev, “Mechanical model of an elastoplastic body,”Prikl. Mekh. Tekh Fiz.,30, No. 5, 136–144 (1989).

    MathSciNet  Google Scholar 

  7. A. I. Chanyshev, “Admissible forms of elasticity-to-plasticity relations,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 6, 59–63 (1994).

    Google Scholar 

  8. A. M. Kovrizhnykh, “Conditions of localization of plastic deformation in metals,”Dokl. Ross. Akad. Nauk,351, No. 5, 630–632 (1996).

    Google Scholar 

  9. M. D. Novopashin, L. I. Bochkarev, and S. V. Suknev, “Determination of the strength of local flow in a stress-concentration zone,”Probl. Prochn., No. 1, 75–76 (1988).

    Google Scholar 

  10. M. D. Novopashin, S. V. Suknev, and A. M. Ivanov,Elastoplastic Deformation and Ultimate State of Structural Members with Stress Concentrators [in Russian], Nauka, Novosibirsk (1995).

    Google Scholar 

  11. M. A. Legan, “The onset of plastic yielding in a stress concentration zone,”Prikl. Mekh. Tekh. Fiz.,32, No. 3, 147–152 (1991).

    Google Scholar 

  12. M. D. Novopashin and S. V. Suknev, “Elastoplastic deformation of the members of structures under gradient yield condition,” in:Proc. of the 11th Conf. on Strength and Plasticity (Moscow, January 22–26, 1996), Vol. 2, Moscow (1996).

  13. M. A. Legan, “Gradient approach to estimation of the strength properties of brittle materials in a maximum-stress zone,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,98 (1990), pp. 49–60.

  14. M. A. Legan, “Correlation of local strength gradient criteria in a stress concentration zone with linear fracture mechanics,”Prikl. Mekh. Tekh. Fiz.,34, No. 4, 146–154 (1993).

    MATH  Google Scholar 

  15. M. A. Legan, M. D. Novopashin, and V. P. Larionov, “On analysis of structural members with cracks by methods of mechanics of a deformed rigid body,” in: Polartech'94: Int. Conf. on Develop. and Commerc. Utilization of Technol. in Polar Regions, Lulea (1994).

  16. M. A. Legan, “Determination of the breaking load and the position and direction of a fracture using the gradient approach,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 117–124 (1994).

    MATH  Google Scholar 

  17. V. E. Panin, L. B. Zuev, V. I. Danilov, and N. M. Mnikh, “Specific features of the displacement field upon plastic deformation of silicon iron,”Fiz. Met. Metaloved.,66, No. 5, 1005–1008 (1988).

    Google Scholar 

  18. V. E. Panin, Yu. V. Grinyaev, V. I. Danilov et al.,Structural Levels of Plastic Deformation and Fracture [in Russian], Nauka, Novosibirsk (1990).

    MATH  Google Scholar 

  19. V. F. Nesterenko, M. P. Bondar, and I. V. Ershoy, “Instability of plastic flow of dynamic pore collapse,” in:High Pressure Science and Technology-American Inst. of Phys. (1994), pp. 1173–1176.

  20. M. P. Bondar, “Localization of plastic deformation on contacts, determining the formation of a strong joint,”Fiz. Goreniya Vzryva,31, No. 5, 122–128 (1995).

    Google Scholar 

  21. N. A. Kostyukov, “Two-dimensional shock flows and the structure of powdered compacts near an interface with a deformable obstacle,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comput. Center-Inst. of Theor. Appl. Mech., Sib. Div., Acad of Sci of the USSR,4(21), No. 4 (1990), pp. 76–102.

  22. N. A. Kostyukov, “Mechanism of lamination of particulate composites in shock loading,”Prikl. Mekh. Tekh. Fiz.,31, No. 1, 84–91 (1990).

    Google Scholar 

  23. V. E. Panin, “New field of solid-state physics,”Izv. Vyssh. Uchebn. Zaved. Fiz., No. 1, 3–8 (1987).

    Google Scholar 

  24. V. E. Panin, V. A. Klimenov, S. G. Psakhie, et al.,New Materials and Technologies. Creation of New Materials and Technologies [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  25. G. V. Ivanov and V. D. Kurguzov, “Momentumless model of the elastoplastic deformation and limiting state of thin interlayers,”Prikl. Mekh. Tekh. Fiz.,35, No. 6, 122–135 (1994).

    MATH  Google Scholar 

  26. G. V. Ivanov and V. D. Kurguzov, “Displacement waves for strain localization in the stretching of a strip with elastoplastic seams,”Prikl. Mekh. Tekh. Fiz.,36, No. 2, 136–143 (1995).

    MATH  Google Scholar 

  27. L. A. Merzhievsky, “Combination of micro- and macro-representations in the model of dynamic deformation and fracture of metals,” in:Mech. Properties of Materials at High Rates of Strain: Proc. 4th Int. Conf., Oxford (1989), pp. 81–88.

  28. L. A. Merzhievsky and Y. F. Kondratyev, “Wave processes in a thermoviscoelastic medium,”J. Phys. Coll. C3,1, 503–510 (1991).

    Google Scholar 

  29. L. A. Merzhievskii, A. D. Resnyanskii, and E. I. Romenskii, “A model of a viscoelastic composite with microstresses. Computational problems in problems of mathematical physics,”Tr. Inst. Mat.,22, 151–167 (1992).

    MATH  MathSciNet  Google Scholar 

  30. L. A. Merzhievskii, A. D. Resnyanskii, and E. I. Romenskii, “A model of dynamic deformation of unidirectional composites,”Dokl. Ross. Akad. Nauk,327, No. 1, 48–54 (1992).

    MATH  Google Scholar 

  31. L. A. Merzhievskii and A. V. Tyagel'skii, “Modelling of dynamic compression of porous iron,”Fiz. Goreniya Vzryva,30, No. 4, 124–133 (1994).

    Google Scholar 

  32. S. A. Bordzilovskii, S. M. Karakhanov, L. A. Merzhievskii, A. D. Resnyanskii, “Attenuation of a shock wave in organoplastic,”Fiz. Goreniya Vzryva,31, No. 2, 125–130 (1995).

    Google Scholar 

  33. L. A. Merzhievsky and A. V. Tyagelsky, “Modeling of shock compression of solid and porous ceramics,” in:Metallurgical Appl. of Shock-Wave and High-Strain-Rate Phenomena: Proc. EXPLOMET'95 (El Paso, Texas, Aug. 6–10, 1995), pp. 575–582.

  34. A. P. Bobryakov, V. P. Kosykh, and A. F. Revuzhenko, “Time structures in the process of deformation of a bulk medium,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 25–35 (1990).

    Google Scholar 

  35. A. V. Leont'ev and L. A. Nazarov, “Determination of the rigidity factors between rocks,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 46–52 (1994).

    Google Scholar 

  36. A. F. Revuzhenko, S. B. Stazhevskii, and E. I. Shemyakin, “Structural dilatancy strength of rocks,”Dokl. Akad. Nauk SSSR,305, No. 5 (1989).

    Google Scholar 

  37. E. I. Shemyakin, ”New ideas in fracture mechanics”, in:Physics and Mechanics of Rock Fracture as Applied to Rock Geomechanics and Seismology: Proc. of Seminar (St. Petersburg, Sept. 7–9, 1993) (1994), pp. 212–225.

  38. A. F. Revuzhenko, “Rock is the medium with internal sources of energy supply and outflow,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1990); No. 5, (1991).

  39. V. I. Karmarenko and A. F. Revuzhenko, “Block-structure formation upon shear of a bulk medium,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 3–10 (1988).

    Google Scholar 

  40. A. F. Revuzhenko, “Functions with a structure—mathematical objects for description of solid-state deformation,”Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 70–85 (1995).

    MATH  MathSciNet  Google Scholar 

  41. V. A. Babakov and E. N. Volodina, “Ultimate equilibrium of plastic material in a plane convergent channel,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 1, 20–24 (1994).

    Google Scholar 

  42. V. A. Babakov, V. A. Kolodko, and S. V. Stazhevskii, “Flat rigid die under transverse load,”Prikl. Mekh. Tekh. Fiz.,35, No. 1, 147–151 (1994).

    MATH  Google Scholar 

  43. V. A. Babakov and M. Yu. Zagorskikh, “Stress waves in reinforced media with internal friction and dilatancy,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 27–34 (1994).

    Google Scholar 

  44. I. Yu. Tsvelodub,Stability Postulate and Its Applications in Creep Theory of Metallic Materials [in Russian], Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1991).

    Google Scholar 

  45. A. F. Nikitenko, “Creep surface. Experimental-theoretical substantiation of its existence,” in:Inelastic Deformation, Structural Strength, and Reliability (Collected scientific papers) [in Russian], Samara Tekh. Univ., Samara (1993), pp. 4–12.

    Google Scholar 

  46. A. F. Nikitenko and I. V. Sukhorukov, “Approximate method for solving relaxation problems in terms of material's damagability under creep,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 135–142 (1994).

    Google Scholar 

  47. O. V. Sosnin, B. V. Gorev, and A. A. Ratnichkin, “Superplasticity mechanics and its link with high-temperature creep,”Sib. Fiz.-Tekh. Zh., No. 4, 15–23 (1993).

    Google Scholar 

  48. O. V. Sosnin, B. V. Gorev, and I. V. Lubashevskaya, “High-temperature creep and superplasticity of materials,”Prikl. Mekh. Tekh. Fiz.,38, No. 2, 140–145 (1997).

    Google Scholar 

  49. B. V. Gorev, A. A. Ratnichkin, and O. V. Sosnin, “Regularities of metal deformation in close-to-superplasticity regimes,” in:Problems of Nonlinear Mechanics of a Solid (Collected scientific papers) [in Russian], Sverdlovsk, (1990), pp. 41–52.

  50. B. V. Gorev, A. A. Ratnichkin, and O. V. Sosnin, “Mechanics of deformation in close-to-superplasticity regimes,” in:Important Problems of the Mechanics of a Deformable Solid (Collected scientific papers [in Russian], Izd. Akad. Nauk, Kazakhstan, Alma-Ata (1992), pp. 128–143.

    Google Scholar 

  51. P. V. Miodushevsky, G. A. Rajevskaya, and O. V. Sosnin, “A new production technology for complex-shaped structural element creep forming,” in: STRV COME 92, INTECO, Paris (1992), pp. 351–356.

    Google Scholar 

  52. O. V. Sosnin and B. V. Gorev, “On the question of plastic metal working in slow temperature-speed deformation regimes,”Proc. of the 9th Conf. on Strength and Plasticity [in Russian], Vol. 1, Moscow (1996), pp. 170–175.

  53. O. V. Sosnin and B. V. Gorev, “Fundamentals of near superplasticity process mechanics,”Superplasticity in Advanced Materials: Proc. Int. Conf. (Moscow, 1994), Vols. 170–172, Teoh. Publ., Acdermannsdorf (1994), pp. 621–626.

    Google Scholar 

  54. Yu. V. Nemirovskii and V. I. Samsonov, “Strength, rigidity, and structural engineering under static and dynamic actions,” Preprint No. 17-92, Inst. Theor. Appl. Mech., Sib. Div, Russian Acad. of Sci., Novosibirsk (1992).

    Google Scholar 

  55. Yu. V. Nemirovskii and V. I. Samsonov, “Analysis of investigations of the dynamic behavior of CM structures,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,7(24) No. 4 (1993), pp. 110–116.

  56. Yu. V. Nemirovskii, V. I. Samsonov, and A. V. Shulgin, “Dynamic thermostability of the composite shells of a sandwich-type structure,”Prikl. Mekh. Tekh. Fiz.,36, No. 5, 164–182 (1995).

    MATH  Google Scholar 

  57. A. N. Andreev and Yu. V. Nemirovskii, “Numerical analysis of the stress-strain state of complex shells of revolution by the method of invariant loading,”Izv. Akad. Nauk Arm. SSR, Mekh.,42, No. 1, 9–19 (1989).

    MATH  MathSciNet  Google Scholar 

  58. S. G. Mezentsev and Yu. V. Nemirovskii, “Stress state of composite shells of double Gaussian curvature,”Izv. Vyssh. Uchebn. Zaved., Stroit. Arkh., No. 2, 38–46 (1995).

    Google Scholar 

  59. B. D. Annin, “The constitutive equations of randomly fiber reinforced materials,” in:Proc. of Int. Conf. of Constitutive Laws for Engineering Materials, Vol. 1, Pergamon Press, Oxford-New York-Beijing (1989), pp. 169–172.

    Google Scholar 

  60. A. V. Plastinin, V. V. Sil'vestrov, and N. N. Gorshkov, “Determination of a dynamic compression diagram of a spherical plastic,”Mekh. Kompoz. Mater., No. 3, 451–454 (1990).

    Google Scholar 

  61. L. V. Baev, E. T. Burdun, Yu. D. Golovchenko, et al., “Stress-strain states of a medium with a finite number of various hollow spherical inclusions upon hydrostatic compression,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,92 (1989), pp. 22–38.

    Google Scholar 

  62. V. V. Alekhin and L. V. Baev, “Optimization of a laminated spherical inclusion in a matrix upon triaxial tension at infinity,”Prikl. Mekh. Tekh. Fiz.,39, No. 1 (1998).

    Google Scholar 

  63. I. V. Yakovlev, L. D. Sirotenko, and A. M. Khanov,Explosion Welding of Reinforced Composites [in Russian], Nauka, Novosibirsk (1991).

    Google Scholar 

  64. E. A. Lankina and A. M. Mikhailov, “Fundamental solutions of the theory of unidirectional composites,”Prikl. Mekh. Tekh. Fiz.,33, No. 3, 120–127 (1992).

    Google Scholar 

  65. A. M. Mikhailov and E. A. Lankina, “Calculation of strength uniformity in a three-dimensional composite,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,103 (1991), pp. 83–87.

  66. A. M. Mikhailov, “Longwave approximation in the theory of unidirectional composites,”Prikl. Mekh. Tekh. Fiz.,34, No. 6, 116–125 (1993).

    Google Scholar 

  67. A. G. Demeshkin, “Experimental study of the effect of deformation velocity on strength properties of glass-epoxy rings,”Mekh. Kompoz. Mater., No. 3, 455–460 (1990).

    Google Scholar 

  68. A. G. Demeshkin and V. M. Kornev, “Transmitted waves and the dynamic edge effect in an anisotropic strip. Comparison with experimental data,”Prikl. Mekh. Tekh. Fiz.,32, No. 2, 144–149 (1991).

    Google Scholar 

  69. A. V. Aseev, N. N. Gorshkov, A. G. Demeshkin, et al., “Experimental study of deformability of glass-reinforced plastic and Plexiglass versus the deformation velocity,”Mekh. Kompoz. Mater., No. 2, 177–195 (1992).

    Google Scholar 

  70. A. V. Aseev, G. E. Makarov, and S. V. Stepanenko, “Experimental investigation of the dynamic behavior of tubular samples of composite fiber materials at the limit of carrying capacity,”Prikl. Mekh. Tekh. Fiz.,33, No. 3, 140–147 (1992).

    Google Scholar 

  71. V. M. Kornev, “The fracture time of fiber bundles under impact tension,”DYMAT J.,2, No. 2, 1–9 (1995).

    Google Scholar 

  72. G. E. Makarov, “Experimental study of oscillations of annular specimens upon internal explosion loading,”Fiz. Goreniya Vzryva,31, No. 6 125–129 (1995).

    Google Scholar 

  73. B. D. Annin, A. L. Kalamkarov, and A. G. Kolpakov,Calculation and Design of Composites and Structural Members [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  74. B. D. Annin and A. G. Kolpakov, “Design of laminar and fibrous composites with given characteristics,”Prikl. Mekh. Tekh. Fiz.,31, No. 2, 136–150 (1990).

    MathSciNet  Google Scholar 

  75. V. V. Alekhin, B. D. Annin, and A. G. Kolpakov,Synthesis of Laminates and Structures [in Russian], Inst. of Hydrodynamics, Novosibirsk (1988).

    Google Scholar 

  76. B. S. Reznikov, “Analysis of the nonlinear deformation of composites with allowance for rotations of structural elements,”Prikl. Mekh. Tekh. Fiz.,32, No. 4, 161–165 (1991).

    MathSciNet  Google Scholar 

  77. B. S. Reznikov and I. Yu. Shalaginova, “A structural approach to describing creep in a fiber-based soft composite,”Prikl. Mekh. Tekh. Fiz.,35, No. 2 149–152 (1993).

    Google Scholar 

  78. N. I. Ostrosablin, “The closest boundaries of elasticity constants and reduction of specific deformation energy to a canonical form,”Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 90–94 (1989).

    Google Scholar 

  79. N. I. Ostrosablin, “Factor matrix in equations of the linear theory of elasticity,”Dokl. Akad. Nauk SSSR,321, No. 1, 63–65 (1991).

    MATH  MathSciNet  Google Scholar 

  80. N. I. Ostrosablin, “The most restrictive bounds on the variation in the applied elastic constants for anisotropic materials,”Prikl. Mekh. Tekh. Fiz.,33, No. 1, 107–1114 (1992).

    MathSciNet  Google Scholar 

  81. S. I. Senashov and A. M. Vinogradov, “Symmetries and conservation laws of 2-dimensional ideal plasticity,”Proc. Edinburgh Math. Soc.,31, 415–439 (1988).

    MATH  MathSciNet  Google Scholar 

  82. S. I. Senashov, “Conservation laws and exact solution of the Cauchy problem for equations of ideal plasticity,”Dokl. Akad. Nauk SSSR,345, No. 5, 619–621 (1995).

    MATH  MathSciNet  Google Scholar 

  83. S. I. Senashov, “Solutions of plasticity equations in the case of helical-spiral symmetry,”Dokl. Akad. Nauk SSSR,317, No. 1, 57–59 (1991).

    MATH  MathSciNet  Google Scholar 

  84. S. I. Senashev and V. A. Chugunov, “Invariant solutions of viscoplasticity equations and solution of the problem of helical motion of a bingham fluid between coaxial cylinders,”Prikl. Mekh. Tekh. Fiz.,32, No. 4 95–102 (1991).

    MathSciNet  Google Scholar 

  85. S. I. Senashov, “Conservation laws of plasticity equations,”Dokl. Akad. Nauk SSSR,320, No. 3, 606–608 (1991).

    MATH  MathSciNet  Google Scholar 

  86. S. V. Meleshko, “Double waves in an ideal rigidly plastic body under plane deformation,”Prikl. Mekh. Tekh. Fiz.,31, No. 2, 131–136 (1990).

    MathSciNet  Google Scholar 

  87. V. D. Bondar', “Plane deformation of poorly compressible materials in the nonlinear theory of elasticity,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,87 (1988), pp. 34–44.

  88. V. D. Bondar', “Finite plane strains of an incompressible elastic material,”Prikl. Mekh. Tekh. Fiz.,31, No. 2, 155–164 (1990).

    MathSciNet  Google Scholar 

  89. V. D. Bondar', “Planar deformation in geometrically nonlinear elasticity,”Prikl. Mekh. Tekh. Fiz.,35, No. 1, 99–114 (1994).

    MATH  MathSciNet  Google Scholar 

  90. V. D. Bondar', “A full-strength orifice under conditions of geometric nonlinearity,”Prikl. Mekh. Tekh. Fiz.,37, No. 6,135–143 (1996).

    Google Scholar 

  91. N. I. Ostrosablin, “Eigenoperators and eigenvectors for a system of differential equations of the linear theory of elasticity of anisotropic materials,”Dokl. Ross. Akad. Nauk,337, No. 5, 608–610 (1994).

    MATH  MathSciNet  Google Scholar 

  92. N. I. Ostrosablin, “Equation of the linear theory of elasticity of anisotropic materials reduced to three independent wave equations,”Prikl. Mekh. Tekh. Fiz.,35, No. 6, 143–150 (1994).

    MATH  MathSciNet  Google Scholar 

  93. N. I. Ostrosablin, “Symmetry operators and general solutions of the equations of the linear theory of elasticity,”Prikl. Mekh. Tekh. Fiz.,36, No. 5, 98–104 (1995).

    MATH  MathSciNet  Google Scholar 

  94. N. I. Ostrosablin, “Compatibility conditions of small deformations and the stress function,”Prikl. Mekh. Tekh. Fiz.,38, No. 5, 136–146 (1997).

    MATH  MathSciNet  Google Scholar 

  95. N. I. Ostrosablin and S. I. Senashov, “General solutions and symmetries of equations of the linear theory of elasticity,”Dokl. Akad. Nauk SSSR,322, No. 3 513–515 (1992).

    MATH  MathSciNet  Google Scholar 

  96. A. M. Khludnev, “Optimal control in one-dimensional elastic-plastic models,”Prikl. Mekh. Tekh. Fiz.,32, No. 5, 112–115 (1991).

    MathSciNet  Google Scholar 

  97. A. M. Khludnev, “Variational inequalities in contact plastic problems,”Differ. Uravn.,24, No. 9, 1622–1628 (1988).

    MATH  MathSciNet  Google Scholar 

  98. A. M. Khludnev, “Variational inequality for a shallow shell operator with a constraint at the boundary,”Prikl. Mat. Mekh.,51, No. 26, 345–348 (1987).

    MATH  MathSciNet  Google Scholar 

  99. A. M. Khludnev, “Optimal control of a plate above an obstacle,”Sib. Mat. Zh.,31, No. 1, 172–178 (1990).

    MATH  MathSciNet  Google Scholar 

  100. A. M. Khludnev, “Extremum shapes of cuts in a plate,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 170–176 (1992).

    Google Scholar 

  101. A. M. Khludnev, “Contact problem for a cracked shallow shell,”Prikl. Mat. Mekh.,59, No. 2, 318–326 (1995).

    MATH  MathSciNet  Google Scholar 

  102. A. M. Khludnev, “Equilibrium problem of a cracked thermoelastic plate,”Sib. Mat. Zh.,37, No. 2, 452–463 (1996).

    MATH  MathSciNet  Google Scholar 

  103. A. M. Khludnev, “Contact problem for a plate having a crack of minimal opening,”Control Cybern.,25, No. 3 605–620 (1996).

    MATH  MathSciNet  Google Scholar 

  104. V. A. Kovtunenko, “Numerical method of solving the problem of the contact of an elastic plate with an obstacle,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 142–146 (1994).

    MATH  MathSciNet  Google Scholar 

  105. V. A. Kovtunenko, “Iteration method of solving variational inequalities in the contact elastoplastic problem using the penalty method,”Zh. Vychisl. Mat. Mat. Fiz.,33, No. 9 1409–1415 (1993).

    MATH  MathSciNet  Google Scholar 

  106. V. A. Kovtunenko, “Numerical solution of the contact problem of an elastoplastic beam for Timoshenko model,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 79–84 (1996).

    Google Scholar 

  107. V. A. Kovtunenko, “Solution of the problem of a beam with a cut,”Prikl. Mekh. Tekh. Fiz.,37, No. 4, 160–166 (1996).

    MATH  Google Scholar 

  108. V. A. Kovtunenko, “Analytical solution of a variational inequality for a cut bar,”Control Cybern. 25, No. 4, 801–808 (1996).

    MATH  MathSciNet  Google Scholar 

  109. V. M. Sadovskii, “Hyperbolic variational inequalities in elastodynamic problems,”Prikl. Mat. Mekh.,55, No. 6, 1041–1048 (1991).

    MATH  MathSciNet  Google Scholar 

  110. V. M. Sadovskii, “The theory of the propagation of elastoplastic waves in strain-hardening media,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 166–172 (1994).

    MATH  MathSciNet  Google Scholar 

  111. V. M. Sadovskii, “Stationary stability of elastoplastic shock waves,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,109 (1994), pp. 18–26.

  112. V. M. Sadovskii, “Algorithms of solution correction in dynamic elastoplastic problems,”Model., Measur., Contr., B,47, No. 4, 1–10 (1993).

    MathSciNet  Google Scholar 

  113. B. D. Annin and V. M. Sadovskii, “Numerical realization of the variational inequality in dynamic elastoplastic problems,”Zh. Vychisl. Mat. Mat. Fiz.,36, No. 9, 177–191 (1996).

    MATH  MathSciNet  Google Scholar 

  114. B. D. Annin and V. M. Sadovsky, “Numerical analysis of laminated elastic-plastic plates under dynamic loading,”Composites Sci. Technol.,45, 241–246 (1992).

    Article  ADS  Google Scholar 

  115. B. D. Annin and V. M. Sadovsky, “The numerical research of the layered elastic-plastic plates dynamic deformation,”Explos. Shock Waves, China,11, No. 3, 206–216 (1991).

    Google Scholar 

  116. B. D. Annin, “Development of the methods of solving elastoplastic problems,” in:Mechanics and Scientific and Engineering Progress, Vol. 3:Mechanics of Deformable Solids [in Russian], Nauka, Moscow (1988), pp. 129–135.

    Google Scholar 

  117. A. I. Gulidov, G. A. Sapoznikov, and V. M. Fomin, “Numerical solutions of collisions of high-speed bodies,”Proc. 2nd Japan-Soviet Union Joint Symp. on Computational Fluid Dynamics (Univ. of Tsukuba, August 27–31, 1990), Vol. 1, pp. 68–85.

  118. A. I. Gulidov, “Organization of the computational process and the data structure in numerical solution of dynamic problems of solids,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, No. 3 (1991), pp. 127–141.

  119. A. M. Gladyshev, A. I. Gulidov, G. A. Sapozhnikov, et al., “Application of the principles of the discrete-continuous notion of a medium in the problems of high-speed interaction of bodies,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,7, No. 4 (1993), pp. 36–51.

  120. S. A. Anisimov and I. O. Bogulskii,Numerical Solution of Dynamic Problems of Elasticity [in Russian], Izd. Novosib. Univ., Novosibirsk (1995).

    Google Scholar 

  121. V. I. Mashukov, “Initial stresses in a crest and in a trough,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 5 13–18 (1993).

    Google Scholar 

  122. S. N. Korobeinikov, V. P. Agapov, M. I. Bondarenko, and A. N. Soldatkin, “The general-purpose nonlinear finite element structural analysis program PIONER,” in: B. Sendov et al. (eds.),Proc. Int. Conf. on Numerical Methods and Applications, Publ. House of the Bulgarian Acad. of Sci., Sofia (1989), pp. 228–233.

    Google Scholar 

  123. S. N. Korobeinikov, “Geometrically nonlinear analysis of two-dimensional elastic bodies,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,80 (1987), pp. 82–89.

  124. S. N. Korobeinikov, “Solution of two-dimensional geometrically and physically nonlinear problems by the finite-element method,” in:Numerical Methods of Solving Elasticity and Plasticity Problems: Materials of the 10th All-Union Conf. [in Russian], Inst. of Theor. and Appl. Mechanics, Sib. Div., Acad. of Sci. of the SSSR, Novosibirsk (1988), pp. 134–140.

    Google Scholar 

  125. B. D. Annin, S. N. Korobeinikov, and V. V. Alyokhin, “The temperature influence on the critical time of creep buckling of the column,” in: W. Tzuchiang and T.-W. Chou (eds.),Progress in Advanced Materials and Mechanics, Peking Univ. Press, Beijing (1996), pp. 802–807.

    Google Scholar 

  126. S. N. Antontsev, K. N. Hoffman, and A. M. Khludnev (eds.), “Free-boundary problems in continuum mechanics, [in: Proc. Int. Conf.] (Novosibirsk, July 15–19, 1991), Birkhäuser Verlag Basel (1992).

    MATH  Google Scholar 

  127. V. V. Alekhin and S. N. Korobeinikov, “Algorithms of solving three-dimensional contact problems by the finite-element method,” in:Numerical Methods of Solving Elasticity and Plasticity Problems, Materials of the 13th Interrepublic Conf. [in Russian], Inst. of Theor. and Appl. Mech., Sib. Div., Russian. Acad. of Sci., Novosibirsk (1995), pp. 4–12.

    Google Scholar 

  128. S. N. Korobeinikov, V. V. Alekhin, and M. I. Bondarenko, “Application of the finite-element method for the solution of three-dimensional contact problems,” in:M. Papadrakakis and B. H. V. Topping (eds.),Advances in Simulation and Interaction Techniques, Proc. 2nd Int. Conf. on Computational Structures Technology, Civil-Comp. Press, Edinburgh (1994), pp. 165–175.

    Google Scholar 

  129. S. N. Korobeinikov, “Geometrically nonlinear analysis of shells including large rotation increments,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,4(21), No. 4 (1990), pp. 119–126.

  130. S. N. Korobeinikov and M. I. Bondarenko, “A material and geometric nonlinear analysis of shells including large rotation increments,” in: J.-A. Désidéri et al. (eds.),Numerical Methods in Engineering '96: Proc. 2nd ECCOMAS Conf., Wiley, Chichester (1996), pp. 754–762.

    Google Scholar 

  131. S. N. Korobeinikov, “Application of the finite-element method to the solution of nonlinear problems of buckling of atomic lattices,” Preprint No. 1-97, Institute of Hydrodynamics, Novosibirsk (1997).

    Google Scholar 

  132. Yu. M. Volchkov, G. V. Ivanov, and V. D. Kurguzov, “Approximation of equations of elastoplastic deformation,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,92 (1989), pp. 45–53.

  133. Yu. M. Volchkov, L. A. Dergileva, and G. V. Ivanov, “Iterative problem solution for the Poisson equation by the self-balanced residuals method,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,102 (1991), pp. 41–55.

    Google Scholar 

  134. Yu. M. Volchkov, L. A. Dergileva, and G. V. Ivanov, “Numerical modeling of stress states in two-dimensional problems of elasticity by the layer method,”Prikl. Mekh. Tekh. Fiz.,35, No. 6, 129–135 (1994).

    MATH  Google Scholar 

  135. V. D. Koshur and Yu. V. Nemirovskii,Continual and Discrete Models of Dynamic Deformation of Structural Members [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  136. V. D. Koshur and A. M. Bykovskih, “The combination of the discrete and structural approach for simulation of the dynamic behaviour of composites subjected to impulse loading and impact,” in: A. Poursartip and K. N. Street (eds.),Proc. 10th Int. Conf. on Composite Materials, Vol. 5, Whistler, Canada (1995), pp. 195–202.

    Google Scholar 

  137. A. F. Revuzhenko, “Uniform shear flows of a bulk medium,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 1, 3–14 (1986).

    Google Scholar 

  138. A. F. Revuzhenko, “The simplest flows of a continuous medium,”Dokl. Akad. Nauk SSSR,303, No. 1, 54–58 (1988).

    Google Scholar 

  139. D. Kolymbas, S. V. Lavrikov, and A. F. Revuzhenko, “Uniform deformation of a granular medium. Theory and experiment,”Prikl. Mekh. Tekh. Fiz.,35, No. 6, 114–121 (1994).

    Google Scholar 

  140. Yu. A. Bogan, “Distribution of stresses in elastic strongly anisotropic material,”Prikl. Mekh. Tekh. Fiz.,35, No. 3, 168–173 (1994).

    MATH  MathSciNet  Google Scholar 

  141. Yu. A. Bogan, “Variational problems with a small parameter in the theory of elasticity,”Prikl. Mekh. Tekh. Fiz.,35, No. 6 151–156 (1994).

    MATH  MathSciNet  Google Scholar 

  142. L. I. Shkutin, “Generalized models of the Cosserat type for finite deformation analysis of thin bodies,”Prikl. Mekh. Tekh. Fiz.,37, No. 3 12–132 (1996).

    MathSciNet  Google Scholar 

  143. L. A. Nazarov, “Wave propagation in thin-layered media,”Dokl. Akad. Nauk SSSR,307, No. 4, (1989).

  144. L. A. Nazarov, “Application of the method of aggregates to the solution of mixed problems in elasticity theory,”Prikl. Mekh. Tekh. Fiz.,33, No. 5 106–110 (1992).

    Google Scholar 

  145. I. Yu. Tsvelodub, “Inverse problems of inelastic deformation,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2 81–92 (1995).

    Google Scholar 

  146. I. Yu. Tsvelodub, “Inverse problems of shape change of inelastic plates,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 96–106 (1996).

    Google Scholar 

  147. I. A. Banshchikova and I. Yu. Tsvelodub, “On one class of inverse problems of variation in the shape of viscoelastic plates,”Prikl. Mekh. Tekh. Fiz.,37, No. 6, 122–131 (1996).

    MATH  MathSciNet  Google Scholar 

  148. A. A. Schwab, “Nonclassical inelastoplastic problem,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1 140–146 (1988).

    Google Scholar 

  149. A. A. Schwab, “Incorrect static elastic problems,”Izv. Ross. Akad. Nauk, Mekh. Tevrd. Tela, No. 6, 98–106 (1989).

    Google Scholar 

  150. A. A. Schwab, “Solution of the inverse elastic problem by the method of the boundary integral equation for a holomorphic vector,”Fiz. Zemli, No. 4, 62–67 (1994).

    Google Scholar 

  151. A. A. Schwab, “Boundary integral equations for inverse problems in elasticity theory,”Int. J. Elast.,4, No.3, 151–160 (1995).

    Article  MathSciNet  Google Scholar 

  152. A. A. Schwab, “One nonclassical problem in static elasticity theory,”Comput. Tomography, Netherlands, 355–359 (1994).

    Google Scholar 

  153. I. Yu. Tsvelodub, “Determining the elastic characteristics of homogeneous anisotropic bodies,”Prikl. Mekh. Tekh. Fiz.,35, No. 3 145–149 (1994).

    MathSciNet  Google Scholar 

  154. Yu. V. Nemirovskii and T. P. Romanova, “Effect of pulsed load form on retained deflections of rigid-plastic plates of a complex shape,”Prikl. Mekh. Tekh. Fiz.,36, No. 6, 113–121 (1995).

    MATH  Google Scholar 

  155. V. A. Babakov and A. D. Zinov'ev, “Scale effect in the problem of plate piercing by a rigid striker,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 5, 18–21 (1993).

    Google Scholar 

  156. A. E. Alekseev, “Derivation of equations for a layer of variable thickness based on expansions in terms of Legendre's polynomials,”Prikl. Mekh. Tekh. Fiz.,35, No. 4, 137–147 (1994).

    MATH  Google Scholar 

  157. A. E. Alekseev, “Two-parameter family of successive (M, N)-approximations of the equations of an elastic layer of variable thickness,”Prikl. Mekh. Tekh. Fiz.,37, No. 3 133–144 (1996).

    MATH  Google Scholar 

  158. L. I. Shkutin,Mechanics of Deformation of Elastic Bodies [in Russian], Nauka, Novosibirsk (1988).

    Google Scholar 

  159. N. S. Astapov and V. M. Kornev, “Postbucking behavior of an ideal bar on an elastic foundation,”Prikl. Mekh. Tekh. Fiz.,35, No. 2, 130–142 (1994).

    MATH  MathSciNet  Google Scholar 

  160. N. S. Astapov and V. M. Korney, “Combined approach to analyzing the buckling of ideal cylindrical shells at given perturbations,”Prikl. Mekh. Tekh. Fiz.,37, No. 2, 170–181 (1996).

    MATH  Google Scholar 

  161. S. K. Golushko and Yu. V. Nemirovskii, “Review and analysis of approaches to the problem of rational design of reinforced shells,” Preprint No. 16, Computing Center, Siv. Div., Acad. of Sci. of the USSR, Krasnoyarsk (1988).

    Google Scholar 

  162. S. K. Golushko and Yu. V. Nemirovskii, “An approach to designing axisymmetric shells with stress-ration reinforcement,” in:Numerical Methods of Elasticity and Plasticity Solution: Materials of the 10th All-Union Conf., Novosibirsk (1988), pp. 58–64.

  163. P. A. Kuntashev and Yu. V. Nemirovskii, “Optimization of the stress state in the elastic-parameter distribution in elastic bodies,”Mathematical Methods and Physicomechanical Fields, No. 30, Kiev (1989), pp. 78–82.

  164. S. G. Mezentsev and Yu. V. Nemirovskii, “Initial failure and rational reinforcement structures of multilayer polyreinforced shells,”Mekh. Kompoz. Mater., No. 3 466–474 (1989).

    Google Scholar 

  165. Yu. V. Nemirovskii and A. P. Yankovskii, “Rational reinforcement of plates upon axisymmetrical bending,”Izv. Vyssh. Uchebn. Zaved., Stroit. Arkh., No. 2, 23–27 (1996).

    Google Scholar 

  166. V. A. Zaev and A. F. Nikitenko, “Analysis and design of structural elements with optimal longevity,”Prikl. Mekh. Tekh. Fiz.,28, No. 3, 165–171 (1987).

    Google Scholar 

  167. V. A. Zaev and A. F. Nikitenko, “Calculation of the stress-strain state of bent annular plates taking account of material damage during creep,”Prikl. Mekh. Tekh. Fiz.,34, No. 3, 142–146 (1993).

    MATH  Google Scholar 

  168. G. D. Babe and E. L. Gusev,Mathematical Methods of Optimizing Interference Filters [in Russian], Nauka, Novosibirsk (1987).

    Google Scholar 

  169. M. A. Kanibolotskii and Yu. S. Urzhumtsev,Optimal Design of Laminate Structures [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  170. V. V. Alekhin, “Design of a laminated anisotropic curvilinear beam of minimal weight,”Prikl. Mekh. Tekh. Fiz.,38, No. 1, 128–135 (1997).

    MATH  Google Scholar 

  171. V. V. Alekhin and B. D. Annin, “Optimization of thermoelastic laminar bodies,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 156–163 (1989).

    Google Scholar 

  172. L. S. Kolodko and P. A. Martynyuk, “Propagation and coalescence of two initially parallel rectilinear cracks,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 4 14–23 (1989).

    Google Scholar 

  173. T. A. Alekseeva and P. A. Martynyuk, “Crack exposure at a free surface,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 2, 15–25 (1991).

    Google Scholar 

  174. P. A. Martynyuk and E. N. Sher, “Crack propagation near an annular hole with allowance for the external field of compressing stresses,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 6, 19–30 (1996).

    Google Scholar 

  175. V. P. Efimov, P. A. Martynyuk, and E. N. Sher, “Emergence paths of cracks on a free surface during wedging,”Prikl. Mekh. Tekh. Fiz.,36, No. 6, 142–152 (1995).

    MATH  Google Scholar 

  176. G. V. Basheev, P. A. Martynyuk, and E. N. Sher, “Effect of the direction and magnitude of an external stress field on the trajectory of a star-shaped system of cracks,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 147–159 (1994).

    MATH  Google Scholar 

  177. P. A. Martynyuk and E. N. Sher, “The effect of the parameters of a two-axial rock-pressure field on the shape of a fracture zone caused by a cord charge in a brittle medium,”Prikl. Mekh. Tekh. Fiz.,39, No. 1 (1998).

    Google Scholar 

  178. V. P. Efimov and E. N. Sher, “Calculation of the intrusion parameters of a rigid wedge in a notched sample,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 1, 109–113 (1989).

    Google Scholar 

  179. V. P. Efimov, P. A. Martynyuk, and E. N. Sher, “Taking into account vertical forces upon wedging,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 3, 32–36 (1992).

    Google Scholar 

  180. V. P. Efimov and E. N. Sher, “A simple method of determing fracturing of brittle materials by wedging of a compact specimen,”Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 1, 32–36 (1996).

    Google Scholar 

  181. V. A. Saraikin, “Movement of the free boundary of a half-space during the propagation of an oblique straight crack,”Prikl. Mekh. Tekh. Fiz.,31, No. 1, 130–136 (1990).

    MathSciNet  Google Scholar 

  182. V. A. Saraikin, “Effect of dry friction on the surface of a growing shear layer on stress concentration,”Prikl. Mekh. Tekh. Fiz.,36, No. 2, 166–172 (1995).

    Google Scholar 

  183. V. A. Saraikin, “Movement of the surface of a compound half-space in a dynamic shear rupture along the internal boundary,”Prikl. Mekh. Tekh. Fiz.,36, No. 4, 155–163 (1995).

    Google Scholar 

  184. A. V. Andreev, V. M. Kornev, and Yu. V. Tikhomirov, “Break of atomic bonds at the crack tip. Loss of stability in a section of the atomic chain,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 135–146 (1993).

    Google Scholar 

  185. V. M. Kornev, and Yu. V. Tikhomirov, “Brittle-fracture criterion of cracked bodies in the presence of a defect in the atomic lattice,”Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 185–193 (1994).

    Google Scholar 

  186. V. M. Kornev and Yu. V. Tikhomirov, “Loss of stability of an atomic chain region in the presence of impurity. Strength reduction of cracked brittle solids,”Prikl. Mekh. Tekh. Fiz.,37 No. 3, 160–173 (1996).

    MATH  MathSciNet  Google Scholar 

  187. V. M. Kornev, “Integral criteria for the brittle strength of cracked bodies with defects in the presence of vacancies at the tip of a crack. Strength of compacted ceramics-type bodies,”Prikl. Mekh. Tekh. Fiz.,37, No. 5, 168–177 (1996).

    Google Scholar 

  188. V. M. Kornev and L. I. Razvorotneva, “Comparative estimates of the strength of dry and wet quartz upon grinding,”Prikl. Mekh. Tekh. Fiz.,39, No. 1 (1998).

    Google Scholar 

  189. V. M. Kornev, “Decrease in metal strength upon hydrogen homosorption at the crack tip,” (in press).

  190. B. D. Annin and V. N. Maksimenko, “Evaluation of failure of composite plates with holes,”Mekh. Kompoz. Meter.,25, No. 2, 284–290 (1989).

    Google Scholar 

  191. B. D. Annin and V. N. Maksimenko, “Evaluation of strength of composite plates with stress concentrators by the linear fracture method,”Mekh. Kompoz. Mater.,30, No. 3, 343–351 (1994).

    Google Scholar 

  192. A. V. Abramenko and V. N. Maksimenko, “Evaluating the residual strength of shells of laminated composites with through-slit-type defects,”Prikl. Mekh. Tekh. Fiz.,35, No. 1, 140–146 (1994).

    MATH  Google Scholar 

Download references

Authors

Additional information

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 38, No. 4, pp. 28–45, July–August, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annin, B.D. Mechanics of solids at the Siberian division of the Russian academy of sciences in 1988–1997. J Appl Mech Tech Phys 38, 517–534 (1997). https://doi.org/10.1007/BF02468102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02468102

Keywords

Navigation