Skip to main content
Log in

Development of fluid mechanics at the Lavrent'ev institute of the siberian division of the Russian academy of sciences in 1986–1996

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. A. Lugovtsov and L. V. Ovsyannikov, “Development of hydrodynamics at the Siberian Division, Academy of Sciences of the USSR,”Prikl. Mekh. Tekh. Fiz.,28, No. 4, 3–22 (1987).

    Google Scholar 

  2. L. V. Ovsyannikov,The SUBMODELS Program [in Russian], Institute of Hydrodynamics, Novosibirsk (1992).

    Google Scholar 

  3. L. V. Ovsyannikov, “The SUBMODELS program. Gas dynamics,”Prikl. Mat. Mekh.,58, No. 4, 30–55 (1994).

    MATH  MathSciNet  Google Scholar 

  4. L. V. Ovsyannikov, “Optimal systems of subalgebras,”Dokl. Ross. Akad. Nauk,333, 702–704 (1993).

    MATH  Google Scholar 

  5. L. V. Ovsyannikov, “Regular and irregular partially invariant solutions,”Dokl. Ross. Akad. Nauk,343, 156–159 (1995).

    MATH  MathSciNet  Google Scholar 

  6. L. V. Ovsyannikov and A. P. Chupakhin, “Regular partially invariant submodels of gas dynamics,”Prikl. Mat. Mekh.,60, No. 6, 1011–1020 (1996).

    MathSciNet  Google Scholar 

  7. L. V. Ovsyannikov, “Type (2,1) regular submodels of the equations of gas dynamics,”Prikl. Mekh. Tekh. Fiz.,37, No. 2, 3–13 (1996).

    MATH  MathSciNet  Google Scholar 

  8. L. V. Ovsyannikov, “Isobaric motion of a gas,” in:Differ. Uravn., Minsk,30, 1792–1799 (1994).

  9. L. V. Ovsyannikov, “Singular vortex,”Prikl. Mekh. Tekh. Fiz.,36, No. 3, 45–52 (1995).

    MATH  MathSciNet  Google Scholar 

  10. S. V. Khabirov, “On the analysis of submodels of vortex motion in gas dynamics,”Usp. Mat. Nauk,50, 119 (1995).

    Google Scholar 

  11. S. V. Khabirov, “On the analysis of invariant submodels of rank three of gas-dynamic equations,”Dokl. Ross. Akad. Nauk,341, 764–766 (1994).

    Google Scholar 

  12. S. V. Meleshko, “Group classification of the equations of two-dimensional motions of a gas,”Prikl. Mat. Mekh.,58, 56–62 (1994).

    MATH  MathSciNet  Google Scholar 

  13. S. V. Meleshko, “On one class of partially invariant solutions of two-dimensional motions of a gas,”Differ. Uravn., Minsk,30, 1825–1827 (1994).

    MATH  MathSciNet  Google Scholar 

  14. A. A. Talyshev, “A computer program of differentiations for a finite-dimensional Lie algebra,”Vychisl. Tekhnol.,4, 272–274 (1995).

    Google Scholar 

  15. A. P. Chupakhin, “Optimal system of subalgebras of one solvable algebraL 7,” in:Lie Groups and Their Applications, Vol. 1, Celal Bayar Univ., Manisa, Turkey (1994), pp. 56–70.

    Google Scholar 

  16. S. V. Golovin, “Optimal system of subalgebras for the Lie algebra of operators admitted by the equations of gas dynamics in the case of a polytropic gas,” Preprint No. 5-96, Institute of Hydrodynamics, Novosibirsk (1996).

    Google Scholar 

  17. A. A. Cherevko, “Optimal system of subalgebras for the Lie algebra of operators admitted by the equations of gas dynamics with the equation of statep=f(S)p 5/3,” Preprint No. 4-96, Institute of Hydrodynamics, Novosibirsk (1996).

    Google Scholar 

  18. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov,Using Group-Theoretical Methods in Hydrodynamics [in Russian], Nauka, Novosibirsk (1994).

    Google Scholar 

  19. S. M. Shugrin, “Galilean systems of differential equations,”Differ. Uravn., Minsk,16, No. 12, 2205–2218 (1980).

    MATH  MathSciNet  Google Scholar 

  20. S. M. Shugrin, “Conservation laws, invariance, and the equation of gas dynamics,Prikl. Mekh. Tekh. Fiz.,30, No. 2, 10–18 (1989).

    MathSciNet  Google Scholar 

  21. S. M. Shugrin, “Two-velocity hydrodynamics and thermodynamics,”Prikl. Mekh. Tekh. Fiz.,35, No. 4, 41–59 (1994).

    MATH  MathSciNet  Google Scholar 

  22. S. M. Shugrin, “Dissipative two-velocity hydrodynamics,”Prikl. Mekh. Tekh. Fiz.,35, No. 4, 59–87 (1994).

    MATH  MathSciNet  Google Scholar 

  23. P. I. Plotnikov, “Bifurcations of the critical points of smooth functionals and the nonuniqueness of solutions of the problem of solitary waves,”Izv. Akad. Nauk SSSR, Ser. Mat.,55, No. 2, 340–366 (1990).

    Google Scholar 

  24. P. I. Plotnikov, “The existence of an infinite set of periodic solutions of the problem of induced oscillations for a weakly nonlinear wave equation,”Mat. Sb.,136(178) No. 4(8), 546–559 (1988).

    Google Scholar 

  25. V. I. Nalimov, “Unsteady vortex surface waves,”Sib. Mat. Zh., No. 6, 1356–1366 (1996).

    MATH  MathSciNet  Google Scholar 

  26. V. I. Nalimov, “Supercritical flows from beneath a shield,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 77–81 (1989).

    MathSciNet  Google Scholar 

  27. V. I. Nalimov, “Subcritical flows from beneath a shield,”Prikl. Mekh. Tekh. Fiz.,39, No. 1 (1998).

    Google Scholar 

  28. N. I. Makarenko, “Smooth bore in a two-layer fluid,”Int. Ser. Numer. Math.,106, Birkhauser Verlag, Basel (1992), pp. 195–204.

    Google Scholar 

  29. N. I. Makarenko, “Asymptotics of asymmetrical internal waves,” in:Vychisl. Tekhnol.,2, No. 4, 22–29 (1993).

  30. N. I. Makarenko, “On the branching of solutions of invariant variational equations,”Dokl. Ross. Akad. Nauk,348, No. 3, 302–304 (1996).

    MATH  MathSciNet  Google Scholar 

  31. V. A. Ageev, V. I. Bukreev, and N. V. Gavrilov, “A new type of plane stationary waves in a two-layer liquid,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 187–190 (1986).

    Google Scholar 

  32. V. N. Gavrilov, “Smooth bores in a two-layer liquid with a velocity shear between the layers,”Prikl. Mekh. Tekh. Fiz.,28, No. 3, 45–49 (1987).

    Google Scholar 

  33. B. E. Protopopov, “Numerical simulation of surface waves in a channel of variable depth,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,84 (1988), 91–105.

  34. B. E. Protopopov, “Numerical analysis of transformations of a solitary wave with reflection from a vertical wall,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 115–123 (1990).

    MATH  Google Scholar 

  35. B. E. Protopopov, “Numerical simulation of effects of generation of solitons by a moving region of surface pressure,”Prikl. Mekh. Tekh. Fiz.,32, No. 3, 78–84 (1991).

    MathSciNet  Google Scholar 

  36. B. E. Protopopov, “Upstream generation of solitons: numerical analysis of the dependence on key parameters,”Prikl. Mekh. Tekh. Fiz.,34, No. 1, 88–94 (1991).

    Google Scholar 

  37. V. M. Teshukov, “On the hyperbolicity of long-wave equations,”Dokl. Akad. Nauk SSSR,284, No. 3, 555–559 (1985).

    MATH  MathSciNet  Google Scholar 

  38. V. M. Teshukov, “On the Cauchy problem for long-wave equations,”Int. Ser. Numer. Math.,106, Birkhauser Verlag, Basel (1992), pp. 331–338.

    Google Scholar 

  39. V. M. Teshukov, “Long waves in an eddying barotropic liquid,”Prikl. Mekh. Tekh. Fiz.,35, No. 6, 17–26 (1994).

    MATH  MathSciNet  Google Scholar 

  40. V. M. Teshukov and M. M. Sterkhova, “Characteristic properties of the system of equations of shear flow with a nonmonotonic velocity profile,”Prikl. Mekh. Tekh. Fiz.,36, No. 3, 53–59 (1995).

    MATH  MathSciNet  Google Scholar 

  41. V. M. Teshukov, “Hydraulic jump in the shear flow of an ideal incompressible fluid,”Prikl. Mekh. Tekh. Fiz.,36, No. 1, 11–20 (1995).

    MATH  MathSciNet  Google Scholar 

  42. V. M. Teshukov, “Hydraulic jump in shear flow of a barotropic fluid,”Prikl. Mekh. Tekh. Fiz.,37, No. 5, 73–81 (1996).

    MATH  MathSciNet  Google Scholar 

  43. V. M. Teshukov, “Simple waves in a shear free-boundary flow of an ideal incompressible fluid,”Prikl. Mekh. Tekh. Fiz.,38, No. 2, 48–57 (1997).

    MATH  MathSciNet  Google Scholar 

  44. A. A. Chesnokov, “Exact solutions of the equations of eddying shallow water,”Prikl. Mekh. Tekh. Fiz.,38, No. 5, 44–55 (1997).

    MATH  MathSciNet  Google Scholar 

  45. B. N. Elemesova, “Simple waves in a layer of an ideal barotropic fluid,”Prikl. Mekh. Tekh. Fiz.,38, No. 5, 56–64 (1997).

    MATH  MathSciNet  Google Scholar 

  46. V. Yu. Liapidevskii, “A model of two-layer shallow water with an irregular interface,” in:Laboratory Modeling (Collected scientific papers) [in Russian], Inst. of Thermal Phys., Novosibirsk (1991), pp. 87–97.

    Google Scholar 

  47. V. Yu. Liapidevskii, “Dynamics of a uniform turbulent layer in a stratified fluid,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 73–76 (1989).

    Google Scholar 

  48. V. Yu. Liapidevskii, “Blocking of the flow of a two-layer immiscible fluid over an obstacle,”Prikl. Mat. Mekh.,58, No. 4, 108–112 (1994).

    MathSciNet  Google Scholar 

  49. V. Yu. Liapidevskii, “Mixing and blocking effects in two-layer flow over an obstacle,” in:Proc. 4th Int. Symp. on Stratified Flows,4 (1994), pp. 183–189.

  50. V. Yu. Liapidevskii, “Forced two-layer flow regimes over an obstacle,”Dokl. Ross. Akad. Nauk,335, No. 1, 61–63 (1994).

    Google Scholar 

  51. V. N. Liapidevskii, “Generation of long waves by the bottom contour in a two-layer flow,”Prikl. Mekh. Tekh. Fiz.,35, No. 3, 34–37 (1994).

    Google Scholar 

  52. N. G. Gavrilov and V. Yu. Liapidevskii, “Anomalous two-layer flow regimes over an obstacle,”Prikl. Mekh. Tekh. Fiz.,37, No. 4, 81–88 (1996).

    Google Scholar 

  53. I. V. Sturova, “Propagation of plane surface waves over a partially capped rectangular trench,”Prikl. Mekh. Tekh. Fiz.,32, No. 5, 40–46 (1991).

    Google Scholar 

  54. I. V. Sturova, “Propagation of plane surface waves over an underwater rectangular step with overhang and over a submerged plate,”Prikl. Mekh. Tekh. Fiz.,32, No. 3, 55–62 (1991).

    Google Scholar 

  55. A. A. Korobkin, “Propagation of internal waves in an exponentially stratified liquid above a protuberance,”Prikl. Mekh. Tekh. Fiz.,33, No. 2, 32–38 (1992).

    MathSciNet  Google Scholar 

  56. A. A. Korobkin, “Fundamental solution of a Cauchy-Poisson problem for a basin with an uneven bottom,”Prikl. Mekh. Tekh. Fiz.,31, No. 2, 40–47 (1990).

    MathSciNet  Google Scholar 

  57. A. A. Korobkin and I. V. Sturova, “Plane Cauchy-Poisson problem for a pond with a smoothly changing bottom. Examples of numerical computation,”Prikl. Mekh. Tekh. Fiz.,31, No. 3, 54–60 (1990).

    Google Scholar 

  58. A. A. Korobkin and I. V. Sturova, “Cauchy-Poisson problem for a pond with a smoothly changing bottom,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,97 91990), pp. 37–50.

  59. A. A. Korobkin and I. V. Sturova, “Numerical calculation of unsteady surface waves using maslov's operator method,” in: Proc. 1st Int. Conf. Math. and Numer. Aspects of Wave Propagation Phenomena, Strastburg, France (1991), pp. 577–591.

  60. I. V. Sturova, “Scattering of internal waves generated by a moving body from periodic bottom roughness,”Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,26, No. 7, 755–762 (1990).

    Google Scholar 

  61. S. V. Sukhinin, “The waveguide effect,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 92–101 (1989).

    MathSciNet  Google Scholar 

  62. A. A. Korobkin, “Asymptotic analysis of the nonstationary problem of waves in a two-layer flow,”Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 6, 82–90 (1987).

    MATH  MathSciNet  Google Scholar 

  63. V. I. Bukreev, A. V. Gusev, and I. V. Sturova, “Generation of internal waves under combined translational and vibrational motion of a cylinder in a fluid bilayer,”Prikl. Mekh. Tekh. Fiz.,27, No. 3, 63–70 (1986).

    Google Scholar 

  64. V. I. Bukreev and N. V. Gavrilov, “Perturbations ahead of a wing moving in a stratified fluid,”Prikl. Mekh. Tekh. Fiz.,31, No. 2, 102–105 (1990).

    Google Scholar 

  65. V. I. Bukreev, N. V. Gavrilov, and A. V. Gusev, “Internal waves in a pycnocline for a wing moving over a barrier,”Prikl. Mekh. Tekh. Fiz.,32, No. 4, 68–74 (1991).

    Google Scholar 

  66. E. V. Ermanyuk, “Experimental study of the force of internal waves acting on a stationary sphere,”Prikl. Mekh. Tekh. Fiz.,34, No. 4, 103–107 (1993).

    Google Scholar 

  67. N. A. Gavrilov and E. V. Ermanyuk, “Effect of pycnocline on forces exerted by internal waves on a stationary cylinder,”Prikl. Mekh. Tekh. Fiz.,37, No. 6, 61–69 (1996).

    Google Scholar 

  68. V. I. Bukreev, A. V. Gusev, and E. V. Ermanyuk, “Experimental study of the motion of a submerged body on internal waves,”Izv. Ross. Akad. Nauk., Mekh. Zhidk. Gaza, No. 2, 199–203 (1995).

    Google Scholar 

  69. N. V. Gavrilov, E. V. Ermanyuk, and I. V. Sturova, “Phenomenon of predominant orientation of a submerged elliptical cylinder under the action of surface waves,”Prikl. Mekh. Tekh. Fiz.,37, No. 3, 25–34 (1996).

    Google Scholar 

  70. V. I. Bukreev, “Instability of internal waves from a cylinder in a shear flow with a large Richardson number,”Prikl. Mekh. Tekh. Fiz.,29, No. 5, 85–89 (1988).

    Google Scholar 

  71. V. V. Sturova, “Effect of internal waves on the hydrodynamic characteristics of a submerged body,”Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,26, No. 6, 732–738 (1993).

    Google Scholar 

  72. I. V. Sturova, “Effect of anomalous dispersion dependences on scattering and generation of internal waves,”Prikl. Mekh. Tekh. Fiz.,35, No. 3, 47–53 (1994).

    MATH  MathSciNet  Google Scholar 

  73. I. V. Sturova, “Plane problem of hydrodynamic shaking of a suomerged body without motion in a two-layered fluid,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 144–155 (1994).

    MATH  Google Scholar 

  74. I. V. Sturova, “Plane problem of hydrodynamic shaking of a submerged body in the presence of motion in a two-layered fluid,”Prikl. Mekh. Tekh. Fiz.,35, No. 5, 32–44 (1994).

    MATH  MathSciNet  Google Scholar 

  75. T. I. Khabakhpasheva, “Plane problem of two-layer flow past a cicrular cylinder,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 91–97 (1996).

    MATH  Google Scholar 

  76. T. I. Khabakhpasheva, “Diffraction of internal waves by a cylinder in a two-layer fluid,”Izv. Akad. Nauk SSSR, Fiz. Atmos Okeana,29, No. 4, 559–564 (1993).

    Google Scholar 

  77. N. V. Gavrilov, E. V. Ermanyuk, and I. V. Sturova, “The forces exerted by internal waves on a restrained body submerged in a stratified fluid,” in: Proc. 21th Symp. on Naval Hydrodynamics, Trondheim, Norway (1996), pp. 254–265.

  78. D. N. Gorelov and S. I. Gorlov, “Motion of an airfoil near a flat screen,”Prikl. Mekh. Tekh. Fiz. 36, No. 1, 47–52 (1995).

    MATH  Google Scholar 

  79. D. N. Gorelov and S. I. Gorlov, “The linear problem of a hydrofoil moving under an interface between two heavy fluids,”Prikl. Mekh. Tekh. Fiz.,37, No. 5, 43–47 (1996).

    MATH  Google Scholar 

  80. S. I. Gorlov, “Motion of a hydrofoil above an interface between two heavy fluids,”Prikl. Mekh. Tekh. Fiz.,37, No. 5, 48–51 (1996).

    MATH  Google Scholar 

  81. S. I. Gorlov, “Solution of linear problems of uniform motion of a vorticity source in a multilayer fluid,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 127–132 (1996).

    Google Scholar 

  82. S. I. Gorlov, “Effect of internal linear waves on the hydrodynamic characteristics of a vorticity source,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 146–153 (1996).

    MATH  Google Scholar 

  83. L. A. Tkacheva, “Unsteady motion of a thin wing in a stratified fluid,”Prikl. Mekh. Tekh. Fiz.,36, No. 6, 37–49 (1995).

    MATH  MathSciNet  Google Scholar 

  84. A. M. Meirmanov,The Stefan Problem [in Russian], Nauka, Novosibirsk (1986).

    MATH  Google Scholar 

  85. V. N. Starovoitov, Solvability of the Stefan problem with the Gibbs-Tomson condition at the interface in small time,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,95 (1990), pp. 151–156.

  86. I. A. Kaliev, “Nonequilibrium phase transitions in frozen grounds,”Free Boundary Problems in Continuum Mechanics. Int. Ser. of Numerical Math.,106 (1992), pp. 141–148.

    MATH  MathSciNet  Google Scholar 

  87. P. I. Plotnikov and V. N. Starovoitov, “The Stefan problem with surface tension as the limit of the equations of the phase field,”Differ. Uravn.,29, No. 3, 461–470 (1993).

    MATH  MathSciNet  Google Scholar 

  88. P. I. Plotnikov, “Equations with a variable direction of parabolicity and the hysteresis effect,”Dokl. Ross. Akad. Nauk,330, No. 6, 691–694 (1993).

    MATH  MathSciNet  Google Scholar 

  89. P. I. Plotnikov, “Passage to the limit for viscosity in equations with a variable direction of parabolicity,”Differ. Uravn.,30, No. 3, 665–675 (1994).

    MATH  MathSciNet  Google Scholar 

  90. P. I. Plotnikov, “Forward-backward parabolic equations and hysteresis,” in:Zap. Nauch. Seminara POMI,28, No. 233, 191–216 (1996).

  91. P. I. Plotnikov, “Passage to the limit for the small parameter in the Kan-Hillard equation,”Sib. Mat. Zh.,38, No. 3 (1997).

    Google Scholar 

  92. V. N. Starovoitov, “Model of the motion of a two-component liquid with allowance for capillary forces,”Prikl. Mekh. Tekh. Fiz.,35, No. 6, 61–71 (1994).

    MathSciNet  Google Scholar 

  93. V. K. Andreev and O. V. Admaev, “Axisymmetric thermocapillary flow in cylinder and cylindrical layer,”Hydromech. and Heat/Mass Transfer in Microgravity, Gordon Breach Sci. Publ., Amsterdam (1992), pp. 169–172.

    Google Scholar 

  94. V. K. Andreev and O. V. Admaev, “Modeling of crystal growth by crucible-free zone melting, in:Problems of Ensuring the Quality of Articles in Machine Building, Proc. Int. Conf. [in Russian], Izd. Krasnoyarsk Univ., Krasnoyarsk (1994), pp. 372–380.

    Google Scholar 

  95. V. K. Andreev, A. A. Rodionov, and E. A. Ryabitskii, “Development of thermocapillary convection in a fluid cylinder and cylindrical and plane layer under the influence of internal heat sources,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 101–108 (1989).

    MathSciNet  Google Scholar 

  96. V. K. Andreev and E. A. Ryabitskii, “Numerical study of thermocapillary instability in a cylindrical layer,” in:Hydrodynamics and Heat-and-Mass Exchange in Nongravity [in Russian], Izd. Novosibirsk Univ., Novosibirsk (1988), pp. 35–44.

    Google Scholar 

  97. E. A. Ryabitskii, “Oscillatory thermocapillary instability of a liquid layer heated from below,” in:Microgravity Sci. Technol., VIII/3, Munich (1995), pp. 1–5.

  98. V. K. Andreev and E. A. Ryabitskii, “Numerical investigation of thermocapillary instability of Marangoni convection in a cylindrical layer, in:Microgravity Sci. Technol., VII/1, Munich (1994), pp. 36–40.

  99. E. A. Ryabitskii, “Stability of thermocapillary motion in a cylindrical layer,”Prikl. Mekh. Tekh. Fiz.,30, No. 4, 50–52 (1989).

    MathSciNet  Google Scholar 

  100. L. G. Badratinova, M. Hennenberg, P. Colinet, and J. C. Legros, “On Rayleigh-Taylor instability in liated liquid-gas and liquid-vaper liate,”Russ. J. Eng. Thermophys.,6, No. 1, 1–31 (1996).

    Google Scholar 

  101. L. G. Badratinova, M. Hennenberg, P. Colinet, and J. C. Legros, “Theoretical models for boiling at microgravity,”Lecture Notes in Phys.,464, 361–370 (1996).

    MATH  ADS  Google Scholar 

  102. L. G. Badratinova, “Crisis of transition of the bubble boiling regime to the sheet regime,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,111 (1996), pp. 15–20.

  103. V. V. Pukhnachov and O. V. Voinov, “Mathematical model of motion of emulsion under the effect of thermocapillary forces and microacceleration,” in: Abstracts Ninth Europ. Symp. of Gravity Dependent Phenomena in Phys. Sci., Berlin (1995), pp. 32–33.

  104. V. V. Pukhnachov and O. V. Voinov, “Thermocapillary motion in an emulsion,” in:Fluid Physics in Microgravity, Proc. 3rd NASA Conf., Cleveland (1996), pp. 337–342.

  105. E. A. Ryabitskii, “Oscillatory thermocapillary instability of the equilibrium of a flat layer in the presence of surfactants,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 6–10 (1993).

    MATH  ADS  Google Scholar 

  106. E. A. Ryabitskii, “Thermocapillary instability of the equilibrium of a flat layer in the presence of surfactants,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 3–8 (1996).

    MATH  Google Scholar 

  107. L. K. Antanovskii, “Influence of surface-active agents on the thinning of a vertical liquid film,”Prikl. Mekh. Tekh. Fiz.,35, No. 2, 54–58 (1994).

    Google Scholar 

  108. V. V. Pukhnachov “Model for convective flow with decreased gravity,” in:Simulation in Mechanics (Collected scientific papers) [in Russian], Comput. Center-Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR,6(23), No. 4 (1992), pp. 47–58.

  109. V. V. Pukhnachov, “Solvability of initial boundary-value problem in nonstandard model of convection,”Zap. Nauch. Seminara POMI,233, 217–226 (1996).

    MATH  Google Scholar 

  110. V. V. Pukhnachov, “Steady problem of microconvection,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,111 (1996), pp. 109–116.

  111. V. V. Pukhnachov, “Microconvection in a vertical layer,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 76–84 (1994).

    Google Scholar 

  112. O. N. Goncharova, “Microconvection in weak force fields. A numerical comparison of two models,”Prikl. Mekh. Tekh. Fiz.,38, No. 2, 58–63 (1997).

    MathSciNet  Google Scholar 

  113. O. N. Goncharova, “Numerical simulation of microconvection in domains with free boundaries,”Prikl. Mekh. Tekh. Fiz.,38, No. 3, 64–68 (1997).

    Google Scholar 

  114. V. L. Sennitskii, “Motion of a circular cylinder in a vibrating liquid,”Prikl. Mekh. Tekh. Fiz.,26, No. 5, 19–23 (1985).

    Google Scholar 

  115. B. A. Lugovtsov and V. L. Sennitskii, “Motion of a body in a vibrating liquid,”Dokl. Akad. Nauk SSSR,289, No. 2, 314–317 (1986).

    MATH  Google Scholar 

  116. V. L. Sennitskii, “Motion of a gas bubble in a viscous vibrating liquid,”Prikl. Mekh. Tekh. Fiz.,29, No. 6, 107–113 (1988).

    Google Scholar 

  117. V. L. Sennitskii, “Predominantly unidirectional motion of a gas bubble in a vibrating liquid,”Dokl. Akad. Nauk SSSR,319, No. 1, 117–119 (1991).

    Google Scholar 

  118. V. L. Sennitskii, “Predominantly unidirectional motion of a compressible body in a vibrating liquid,”Prikl. Mekh. Tekh. Fiz.,34, No. 1, 100–101 (1993).

    Google Scholar 

  119. V. L. Sennitskii, “Motion of a sphere in a fluid caused by vibrations of another sphere,”Prikl. Mekh. Tekh. Fiz.,27, No. 4, 31–36 (1986).

    MathSciNet  Google Scholar 

  120. V. L. Sennitskii, “On motion of inclusions in uniformly and nonuniformly vibrating liquid,” in:Proc. Int. Workshop on G-Jitter, Clarkson Univ., Potsdam (1993).

    Google Scholar 

  121. O. M. Lavrent'eva, “On motion of a solid body in an ideal vibrating liquid,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,103 (1991), pp. 120–125.

  122. A. A. Kashevarov, “Numerical simulation of the interrelation between pressure filtration and surface drainage,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,111, (1996), pp. 40–48.

  123. S. N. Antontsev and A. A. Kashevarov, “Localization of solutions of nonlinear parabolic equations degenerating on the surface,ibid. Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,111, (1996), pp. 7–20.

  124. V. N. Emikh,Hydrodynamics of Filtration Flows with Drainage [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  125. V. I. Pen'kovskii and S. T. Rybakova, “Crust formation in borehole drilling,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,90, 72–80 (1989).

  126. V. I. Pen'kovskii and S. T. Rybakova, “Numerical simulation of heat-and-mass transfer for underground leaching,”ibid. Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,90, pp. 81–92.

  127. Yu. I. Kapranov, “Structural model of mechanical mud injection into a porous medium,”ibid., Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,90, pp. 27–39.

  128. A. V. Domanskii, “Stabilization of the generalized solutions of degenerate problems of two-phase filtration,”Differ. Uravn.,27, No. 4, 641–648 (1991).

    MATH  MathSciNet  Google Scholar 

  129. S. N. Antontsev, N. I. Diaz, and A. V. Domanskii, “Stability and stabilization of the generalized solutions of degenerate problems of two-phase filtration,”Dokl. Ross. Akad. Nauk,326, No. 6, 1151–1155 (1992).

    Google Scholar 

  130. S. N. Antontsev, A. V. Domanskii, and V. I. Pen'kovskii,Filtartion in the Borehole Zone of a Bed and Intensification of Inflow [in Russian], Institute of Hydrodynamics, Novosibirsk (1989).

    Google Scholar 

  131. V. I. Pen'kovskii, “Capillary pressure and the gravity and dynamic phase distribution in a water-oil-gas-rock system,”Prikl. Mekh. Tekh. Fiz.,37, No. 6, 85–90 (1996).

    Google Scholar 

  132. V. N. Monakhov and N. V. Khusnutdinova, “Conjugation of channel and filtration flows of a viscous incompressible fluid,”Prikl. Mekh. Tekh. Fiz.,36, No. 1, 95–99 (1995).

    MATH  MathSciNet  Google Scholar 

  133. V. A. Vladimirov, “Instability of the equilibrium of fluids,”Prikl. Mekh. Tekh. Fiz.,30, No. 2, 108–116 (1989).

    Google Scholar 

  134. V. A. Vladimirov, “Variational approaches in the theory of stability of the baroclinic atmosphere,”Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,25, No. 4, 348–355 (1995).

    Google Scholar 

  135. V. A. Vladimirov, “Instability of the equilibrium of a viscous capillary fluid,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,89 (1989), 92–106.

  136. V. A. Vladimirov and V. V. Rumyantsev, “On the generalization of the Lagrange theorem for a solid body with a cavity containing an ideal fluid,”Prikl. Mat. Mekh.,53, No. 2, 608–612 (1989).

    MATH  MathSciNet  Google Scholar 

  137. V. A. Vladimirov and V. V. Rumyantsev, “On the generalization of the Lagrange theorem for a solid body with a cavity containing a viscous fluid,”Prikl. Mat. Mekh.,54, No. 2, 190–200 (1990).

    MATH  MathSciNet  Google Scholar 

  138. K. I. Il'in, “Instability of the states of equilibrium for liquid crystals,” in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,96 (1990), 111–121.

  139. Yu. G. Gubarev, “On the inversion of the Lagrange theorem in magnetohydrodynamics,”Prikl. Mat. Mekh.,54, No. 6, 988–991 (1990).

    MATH  MathSciNet  Google Scholar 

  140. Yu. G. Gubarev, “Instability of a self-gravitating compressible medium,”Prikl. Mekh. Tekh. Fiz.,35, No. 4, 68–77 (1994).

    MATH  MathSciNet  Google Scholar 

  141. K. I. Il'in, “On the stability of a baroclinic vortex,”Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,27, No. 5, 584–588 (1991).

    Google Scholar 

  142. Yu. G. Gubarev, “On the instability of oscillatory symmetrical MHD flows,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 19–25 (1995).

    MATH  MathSciNet  Google Scholar 

  143. V. A. Vladimirov, “Analogs of the Lagrange theorem in the hydrodynamics of eddying and stratified fluids,”Prikl. Mat. Mekh.,50, No. 5, 727–733 (1986).

    MATH  MathSciNet  Google Scholar 

  144. V. A. Vladimirov, “Conditions for nonlinear stability of flows of an ideal incompressible liquid,”Prikl. Mekh. Tekh. Fiz.,27, No. 3, 70–78 (1986).

    Google Scholar 

  145. V. A. Vladimirov, “On nonlinear stability of incompressible fluid flows,”Arch. Mech.,38, Nos. 5 and 6, 689–696 (1986).

    MATH  Google Scholar 

  146. V. L. Vladimirov, “Stability of flows with vortex discontinuity,”Prikl. Mekh. Tekh. Fiz.,29, No. 1, 83–91 (1988).

    Google Scholar 

  147. V. L. Vladimirov and Yu. G. Gubarev, “Conditions for nonlinear stability of plane and spiral MHD flows,”Prikl. Mekh. Tekh. Fiz.,59, No. 3, 442–450 (1995).

    MATH  MathSciNet  Google Scholar 

  148. S. Ya. Belov and V. A. Vladimirov, “An example of inversion of the Lagrange theorem in the hydrodynamics of a two-layer fluid,”Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,84 (1988), pp. 21–27.

  149. M. A. Gol'dshtik, E. M. Zhdanova, and V. N. Shtern, “Spontaneous swirling of a buoyant jet,”Dokl. Akad. Nauk SSSR,277, No. 4, 815–818 (1984).

    MATH  Google Scholar 

  150. M. A. Goldshtik, E. M. Shtern, and N. I. Yavorskii,Viscous Flows with Paradoxical Properties [in Russian], Nauka, Novosibirsk (1989).

    MATH  Google Scholar 

  151. M. A. Gol'dshtik and V. N. Shtern, “Turbulent vortex dynamo,”Prikl. Mat. Mekh.,53, No. 4, 613–624 (1989).

    MATH  MathSciNet  Google Scholar 

  152. B. A. Lugovtsov, “Is spontaneous swirling of axisymmetric flow possible?”Prikl. Mekh. Tekh. Fiz.,35, No. 2, 50–54 (1994).

    MATH  MathSciNet  Google Scholar 

  153. Yu. G. Gubarev and B. A. Lugovtsov, “On spontaneous swirling in axisymmetric flows,”Prikl. Mekh. Tekh. Fiz.,36, No. 4, 52–59 (1995).

    MATH  MathSciNet  Google Scholar 

  154. B. A. Lugovtsov, “Spontaneous swirling in axisymmetric flows of a conducting fluid in a magnetic field,”Prikl. Mekh. Tekh. Fiz.,37, No. 6, 36–43 (1996).

    MathSciNet  Google Scholar 

  155. B. A. Lugovtsov, “Axisymmetric spontaneous swirling in an ideal conducting fluid in a magnetic field,”Prikl. Mekh. Tekh. Fiz.,38, No. 6, 29–31 (1997).

    MATH  MathSciNet  Google Scholar 

  156. O. V. Kaptsov, “Some classes of two-dimensional vortex flows of an ideal fluid,”Prikl. Mekh. Tekh. Fiz.,30, No. 1, 109–117 (1989).

    MathSciNet  Google Scholar 

  157. O. V. Kaptsov, “Steady vortex structures in an ideal fluid,”Zh. Éksp. Teor. Fiz., No. 1, 109–117 (1989).

    MathSciNet  Google Scholar 

  158. R. M. Garipov, “An ellipsoidal drop or vortex in an inhomogeneous flow,”Prikl. Mekh. Tekh. Fiz.,37, No. 4, 76–80 (1996).

    MATH  MathSciNet  Google Scholar 

  159. A. F. Voevodin and A. S. Ovcharova, “On the calculation of a vortex function at the boundary of a closed circular region,”Model. Mekh.,5 (22), No. 1, 115–120 (1991).

    MathSciNet  Google Scholar 

  160. A. F. Voevodin, “Stability and realization of implicit schemes for the Stokes equations,”Zh. Vychisl. Mat. Mat. Fiz.,33, No. 1, 119–130 (1993).

    MATH  MathSciNet  Google Scholar 

  161. A. F. Voevodin, V. V. Ostapenko, Yu. V. Pibobarov, and S. M. Shugrin,Problems of Computational Mathematics [in Russian], Izd. Sib. Otdel. Ross. Akad. Nauk, Novosibirsk (1995).

    Google Scholar 

  162. A. F. Voevodin, “Stability of the difference boundary-value problem for the Stokes equations in a doubly-connected circular region”, in:Vychisl. Tekhnol.,4, No. 12, 70–76 (1995).

  163. V. V. Kuznetsov, “On the conditions of solvability of the boundary-value problem for the Prandtl boundary layer”,Sib. Mat. Zh.,35, No. 3, 624–629 (1994).

    MATH  Google Scholar 

  164. D. G. Akhmetov and V. F. Tarasov, “Structure and evolution of vortex cores”,Prikl. Mekh. Tekh. Fiz.,27, No. 5, 68–73 (1986).

    Google Scholar 

  165. V. G. Makarenko and V. S. Tarasov, “Flow structure of a rotating liquid after motion of a body in it”,Prikl. Mekh. Tekh. Fiz.,29, No. 6, 113–117 (1988).

    Google Scholar 

  166. V. G. Makarenko and V. F. Tarasov, “Experimental model of the tornado”,Prikl. Mekh. Tekh. Fiz.,28, No. 5, 115–122 (1987).

    Google Scholar 

  167. G. Makarenko and V. F. Tarasov, “Experimental model of the tornado”,Dokl. Akad. Nauk SSSR,305, No. 2, 297–300 (1989).

    Google Scholar 

  168. V. G. Makarenko, “The characteristics of inertial resonances in a rotating liquid”,Prikl. Mekh. Tekh. Fiz.,34, No. 2, 89–96 (1993).

    Google Scholar 

  169. V. G. Makarenko, “Dependence of formation time of oscillating vortices on excitation frequency of a rotating fluid”,Prikl. Mekh. Tekh. Fiz.,36, No. 1, 85–94 (1995).

    MathSciNet  Google Scholar 

  170. V. V. Nikulin, “Conical vortex flow induced by tangential stresses on a free plane surface”,Prikl. Mat. Mekh.,52, No. 4, 594–600 (1988).

    MATH  MathSciNet  Google Scholar 

  171. V. V. Nikulin, “Space evolution of tornado-like vortex core”,Int. Ser. Numer. Math.,106, Birkhauser Verlag, Basel (1992), pp. 229–237.

    Google Scholar 

  172. V. V. Nikulin, “Analog of the shallow-water vortex equation for hollow and tornado-like vortices. Height of a steady tornado-like cortex”,Prikl. Mekh. Tekh. Fiz.,33, No. 2, 47–52 (1992).

    MathSciNet  Google Scholar 

  173. V. V. Nikulin, “Decay of a vertical tornado-like vortex”,Prikl. Mekh. Tekh. Fiz.,33, No. 4, 42–47 (1992).

    MathSciNet  Google Scholar 

  174. V. V. Nikulin, “Motion of the swirled fluid in the core of a vertical, tornado-like vortex”,Prikl. Mekh. Tekh. Fiz.,36, No. 2, 81–87 (1995).

    MATH  MathSciNet  Google Scholar 

  175. V. V. Nikulin, “A hollow vortex with an axial velocity in a tube of variable radius”,Prik. Mat. Mekh.,58, No. 2, 49–53 (1994).

    MATH  MathSciNet  Google Scholar 

  176. B. A. Lugovtsov, “Determination of the main flow parameters in a swirl atomizer by means of conservation laws”,Prikl. Mekh. Tekh. Fiz.,30, No. 2, 68–73 (1989).

    Google Scholar 

  177. B. A. Lugovtsev, “Principle of maximum discharge”,Prikl. Mekh. Tekh. Fiz.,32, No. 4, 105–106 (1991).

    Google Scholar 

  178. V. I. Bukreev, “Experimental study of the range of application of the solution of the Stokes second problem”,Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 26–31 (1988).

    Google Scholar 

  179. N. V. Alekseenko and V. A. Kotomakha, “Experimental study of an axisymmetric momentum-free turbulent jet”,Prikl. Mekh. Tekh. Fiz.,28, No. 1, 65–69 (1987).

    Google Scholar 

  180. V. A. Kostomaha and N. V. Lesnova, “Turbulent swirling wake behind a sphere with complete or partial drag compensation”,Prikl. Mekh. Tekh. Fiz.,36, No. 2, 88–98 (1995).

    Google Scholar 

  181. V. I. Bukreev, A. G. Demenkov, V. A. Kostomakha, and G. G. Chernykh, “Heat propagation from a linear source in a plane turbulent wake”,Prikl. Mekh. Tekh. Fiz.,37, No. 5, 115–126 (1996).

    Google Scholar 

  182. V. P. Ryabchenko, “Calculation of the unsteady aerodynamic characteristics of an annular blade cascade of arbitrary shape”,Tr. TsIAM, No. 1221, 4–14 (1987).

    Google Scholar 

  183. V. P. Ryabchenko, “Unsteady aerodynamic characteristics of a three-dimensional blade cascade in a subsonic gas flow”,Prikl. Mekh. Tekh. Fiz.,36, No. 2, 45–55 (1995).

    MATH  MathSciNet  Google Scholar 

  184. V. B. Kurzin, “Flow of an ideal fluid induced by a periodic system of vortex wakes”, in:Dynamics of Continuous Media (Collected scientific papers) [in Russian], Novosibirsk,87, 88–96 (1987).

  185. V. A. Yudin, “Airfoil cascade in unsteady eddy flow”,Prikl. Mekh. Tekh. Fiz.,35, No. 4, 85–91 (1994).

    MATH  MathSciNet  Google Scholar 

  186. R. A. Izmailov, V. B. Kurzin, and V. L. Okulov, “Acoustic resonance in subsonic aerodynamic interaction of cascades”,Prikl. Mekh. Tekh. Fiz.,28, No. 1, 20–27 (1987).

    Google Scholar 

  187. V. B. Kurzin and O. B. Ovsyannikova, “On the stability of a vortex source at the center of a rotating annular airfoil cascade”,Tr. TsIAM, No. 1293, 87–98 (1991).

    Google Scholar 

  188. V. B. Kurzin, S. N. Korobeinikov, V. P. Ryabchenko, and L. A. Tkacheva, “Natural vibrations of a uniform cascade of hydraulic-turbine blades in a fluid”,Prikl. Mekh. Tekh. Fiz.,38, No. 2, 80–90 (1997).

    Google Scholar 

  189. V. B. Kurzin, “Asymptotic model of an active resonance absorber of acoustic vibration in a bounded region”,Prikl. Mekh. Tekh. Fiz.,35, No. 6, 44–55 (1994).

    MATH  MathSciNet  Google Scholar 

  190. V. B. Kurzin, “Hydroelastic oscillations of the active portion of an inductive source of energy”,Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 151–158 (1994).

    Google Scholar 

  191. S. V. Sukhinin and V. F. Akhmadev, “Hydrodynamic sources of oscillations in combustion chambers”,Fiz. Goreniya Vzryva,29, No. 6, 38–46 (1993).

    Google Scholar 

  192. S. V. Sukhinin and V. F. Akhmadev, “Oscillations and vortices in a combustion chamber”,Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 111–118 (1994)

    Google Scholar 

  193. A. A. Korobkin and V. V. Pukhnachov, “Initial stage of water impact”,Ann. Rev. Fluid Mech.,20, 159–185 (1988).

    ADS  Google Scholar 

  194. A. A. Korobkin, “Acoustic effects on water impact”, Proc. 10th Int. Workshop on Water Waves and Floating Bodies, Oxford (1995), pp. 25.1–25.4.

  195. A. A. Korobkin, “Acoustic approximation in the penetration of an ideal fluid by a blunted contour”,Prikl. Mekh. Tekh. Fiz.,33, No. 4, 48–54 (1992).

    MathSciNet  Google Scholar 

  196. A. A. Korobkin, “Blunt-body impact on the free surface of a compressible liquid”,J. Fluid Mech.,263, 319–342 (1994).

    MATH  MathSciNet  ADS  Google Scholar 

  197. A. A. Korobkin, “Impact on the surface of a compressible liquid”, in:Propagation of a Weak, Nearly Plane Shock Wave. Shock Waves,4, No. 4, 209–216 (1995).

  198. A. A. Korobkin, “Impact on the surface of a compressible liquid”, in:Focusing of a Weak, Near-Cylindrical Shock Wave. Shock Waves,4, No. 4, 217–224 (1995).

  199. A. A. Korobkin, “Jetting under body impact on a liquid free surface”, in: Proc. 4th Int. Symp. on Nonlinear and Free-Surface Flows, Hiroshima Univ. (1995), pp. 5–8.

  200. A. A. Korobkin, “Low-pressure zones under a liquid-solid impact”,Fluid Mech. Its Appl.,23, 375–381 (1994).

    Google Scholar 

  201. A. A. Korobkin, “Acoustic approximation in the slamming problem”,J. Fluid Mech.,318, 165–188 (1996).

    MATH  MathSciNet  ADS  Google Scholar 

Download references

Authors

Additional information

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 38, No. 4, pp. 3–27, July–August, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lugovtsov, B.A., Ovsyannikov, L.V. Development of fluid mechanics at the Lavrent'ev institute of the siberian division of the Russian academy of sciences in 1986–1996. J Appl Mech Tech Phys 38, 493–516 (1997). https://doi.org/10.1007/BF02468101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02468101

Keywords

Navigation