Advertisement

Effect of deformation and external load on the characteristics of martensite transformations and shape-memory effects in alloys based on titanium nickelide

  • V. É. Gunter
  • T. Yu. Maletkina
  • A. A. Klopotov
Article

Abstract

The effect of plastic deformation and external load on the characteristics of shape-memory effects is studied for alloys based on titanium nickelide of nearly equiatomic composition. A nonmonotonic dependence of the characteristic temperatures of martensite transformations on the strain degree of deformation is obtained. This phenomenon is explained in relation to the stages of development of plastic deformation. Optimal loading and deformation conditions for obtaining maximum values of reversible deformation are determined.

Keywords

Martensite Martensite Transformation Residual Strain Shape Recovery Dislocation Substructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. É. Gyunter, V. I. Itin, L. A. Monasevich, et al.,Shape-Memory Effects and Their Applications in Medicine [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  2. 2.
    V. A. Likhachev, S. A. Kuz'min, and Z. P. Kamentseva,Shape-Memory Effects [in Russian], Izd. Leningrad Univ. (1987).Google Scholar
  3. 3.
    S. Rodriguez and L. S. Braun, “Mechanical properties in alloys that exhibit shape-memory effects,” in:Shape-Memory Effect in Alloys [Russian translation], Metallurgiya, Moscow (1979).Google Scholar
  4. 4.
    Yu. K. Kovneristyi, S. G. Fedotov, L. A. Oleinikova, “Shape-memory effects and shape recovery in TiNi alloy in relation to strain,”Fiz. Met. Metaloved.,62, No. 2, 344–348 (1986).Google Scholar
  5. 5.
    V. B. Fedorov, I. D. Morokhov, I. V. Zolotukhin, and E. G. Galkina, “Effect of severe plastic deformation of the properties of titanium nickelide,”Dokl. Akad. Nauk SSSR,277, No. 5, 1131–1133 (1984).Google Scholar
  6. 6.
    Yu. I. Paskal', V. Ya. Erofeev, L. A. Monasevich, and V. A. Pavskaya, “Martensite deformation of titanium nickelide,”Izv. Vyssh Uchebn. Zaved., Fiz., No. 6, 103–117 (1982).Google Scholar
  7. 7.
    V. É. Gunter, V. V. Kotenko, V. K. Mirgazizov, et al.,Shape-Memory Alloys in Medicine [in Russian], Izd. Tomsk Univ., Tomsk (1986).Google Scholar
  8. 8.
    V. É. Gunter, T. Yu. Serikova, L. A. Monasevich, and Yu. I. Paskal', USSR Inventor's Certificate No. 1698688, “Method of determining the temperature dependence of the yield point,”Otkr. Izobr., No. 46 (1991).Google Scholar
  9. 9.
    V. É. Gunter, “Shape-memory alloys and constructions in medicine,” Doct. Dissertation in Tech. Sci., Tomsk (1989).Google Scholar
  10. 10.
    I. A. Akhiezer, L. N. Davydov, and T. P. Chernyaeva, “On polymorphous transformations in highly disperse polycrystalline structures,” in:Questions of Atomic Science and Engineering, Physics of Radiation Damage and Radiation Materials Science, No. 2 (1987), pp. 3–8.Google Scholar
  11. 11.
    V. E. Panin, Yu. V. Grinyaev, V. I. Danilov, et al.,Structural Levels of Plastic Deformation and Damage [in Russian], Nauka, Novosibirsk (1990).Google Scholar
  12. 12.
    V. A. Pavlov,Physical Foundations of Plastic Deformation of Metals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962), pp. 85–107.Google Scholar
  13. 13.
    A. A. Klopotov, O. B. Perevalova, and N. A. Koneva,Evolution of the Dislocation Structure, Hardening, and Failure of Alloys [in Russian], Izd. Tomsk Univ., Tomsk (1992), pp. 84–93.Google Scholar
  14. 14.
    N. A. Koneva and É. V. Kozlov, “Mechanism of substructural hardening,”Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 56–70 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. É. Gunter
  • T. Yu. Maletkina
  • A. A. Klopotov

There are no affiliations available

Personalised recommendations