Skip to main content
Log in

Variational approach to constructing hyperbolic models of two-velocity media

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A generalized Hamilton variational principle of the mechanics of two-velocity media is proposed, and equations of motion for homogeneous and heterogeneous two-velocity continua are formulated. It is proved that the convexity of internal energy ensures the hyperbolicity of the one-dimensional equations of motion of such media linearized for the state of rest. In this case, the internal energy is a function of both the phase densities and the modulus of the difference in velocity between the phases. For heterogeneous media with incompressible components, it is shown that, in the case of low volumetric concentrations, the dependence of the internal energy on the modulus of relative velocity ensures the hyperbolicity of the equations of motion for any relative velocity of motion of the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kh. A. Rakhmatulin, “Fundamentals of the gas dynamics of interpenetrating motions of continuous media,”Prikl. Mat. Mekh.,20, No. 2, 184–195 (1956).

    Google Scholar 

  2. R. I. Nigmatulin,Dynamics of Multiphase Media, Part 1, Hemisphere Publ., New York (1991).

    Google Scholar 

  3. M. Ishii,Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles (1975).

  4. D. A. Drew, “Mathematical modeling of two-phase flow,”Ann. Rev. Fluid Mech.,15, 261–291 (1983).

    Article  MATH  ADS  Google Scholar 

  5. A. N. Kraiko and L. E. Sternin, “On the theory of flows of two-velocity continua with solid or liquid fragments,”Prikl. Mat. Mekh.,29, No. 3, 418–429 (1965).

    Google Scholar 

  6. J. H. Stuhmiller, “The influence of interfacial pressure forces on the character of two-phase flow model equations,”Int. J. Multiphase Flow.,3, 551–560 (1977).

    Article  MATH  Google Scholar 

  7. H. B. Stewart and B. Wendroff, “Two-phase flow: models and methods,”J. Comput. Phys.,56, 363–409 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. V. H. Ransom and D. L. Hicks, “Hyperbolic two-pressure models for two-phase flow,”J. Comput. Phys.,53, 124–151 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. V. Yu. Liapidevskii, “Hyperbolic two-phase flow model based on conservation laws,” in:XI Int. Symp. Nonlinear Acoustics, Part I, Novosibirsk (1987), pp. 66–70.

  10. R. M. Garipov, “Closed equations of motion for a bubbly liquid,”Prikl. Mekh. Tekh. Fiz., No. 6, 3–24 (1973).

    MathSciNet  Google Scholar 

  11. A. Biesheuvel and L. van Wijngaarden, “Two-phase flow equations for a dilute dispersion of gas bubbles in liquid,”J. Fluid Mech.,148, 301–318 (1984).

    Article  MATH  ADS  Google Scholar 

  12. T. C. Haley, R. T. Lahey, and D. A. Drew, “A characteristic analysis of void waves using two-fluid models,” in:Proc. Int. Conf. on Multiphase Flows'91 (Tsukuba, Japan, Sept. 24–27, 1991), Vol. 2 (1991), pp. 161–164.

  13. H. Städtke and R. Holtbecker, “Hyperbolic models for inhomogeneous two-phase flow,”ibid. Proc. Int. Conf. on Multiphase Flows'91 (Tsukuba, Japan, Sept. 24–27, 1991), Vol. 2 (1991), pp. 97–100.

  14. J. Fabre, A. Liné, and E. Gadoin, “Void and pressure waves in slug flow”,Proc. IUTAM Symp. On Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems (Kyoto, Japan, May 9–13, 1995), Vol. 2 (1995), pp. 25–44.

  15. L. D. Landau and E. M. Lifshits,Hydrodynamics [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

  16. I. M. Khalatnikov,Theory of Superfluidity [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  17. S. Patterman,Superfluid Hydrodynamics, North-Holland, Amsterdam-London (1974).

    Google Scholar 

  18. P. H. Roberts and D. E. Loper, “Dynamical processes in slurries,” in:Structure and Dynamics of Partially Solidified Systems by NATO ASI, Ser. E, No. 125 (1987), pp. 229–290.

  19. V. N. Dorovskii and Yu. V. Perepchko, “Theory of partial melting,”Geol. Geofiz., No. 9, 56–65 (1989).

    Google Scholar 

  20. V. N. Dorovskii and Yu. V. Perepchko, “Phenomenological description of two-velocity media with relaxing tangential stresses,”Prikl. Mekh. Tekh. Fiz., No. 3, 99–110 (1992).

    Google Scholar 

  21. S. M. Shugrin, “Two-velocity hydrodynamics and thermodynamics,”Prikl. Mekh. Tekh. Fiz.,35, No. 4, 41–59 (1994).

    MATH  MathSciNet  Google Scholar 

  22. S. M. Shugrin, “Dissipative two-velocity hydrodynamics,” —ibid., 59–68.

    MATH  MathSciNet  Google Scholar 

  23. L. I. Sedov, “Mathematical methods for developing new models of continuous media,”Usp. Mat. Nauk,20, No. 5, 121–180 (1965).

    MATH  MathSciNet  Google Scholar 

  24. I. M. Khalatnikov and V. N. Pokrovskii, “Hamiltonian formalism in classical and two-fluid hydrodynamics,”Pis'ma Zh. Éksp. Teor. Fiz.,23, No. 11, 653–656 (1976).

    Google Scholar 

  25. A. Bedford and D. S. Drumheller, “A variational theory of immiscible mixture,”Arch. Rat. Mech. Annal.,68, 37–51 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  26. V. L. Berdichevskii,Variational Principles of the Mechanics of Continuous Media [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  27. J. A. Geurst, “Virtual mass in two-phase bubbly flow,”Physica, A,129A, 233–261 (1985).

    Article  ADS  Google Scholar 

  28. J. A. Geurst, “Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures,”Physica, A,135A, 455–486 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Gouin, “Variational theory of mixtures in continuum mechanics,”Eur. J. Mech. B-Fluid,9, No. 5, 469–491 (1990).

    MATH  MathSciNet  Google Scholar 

  30. S. L. Gavrilyuk and Yu. V. Perepechko, “Variational approach to the construction of hyperbolic models of two-velocity media,” Preprint No. 3-96, Institute of Hydrodynamics, Sib. Div., Russian Acad. of Sciences, Novosibirs (1996).

    Google Scholar 

  31. S. L. Gavrilyuk and S. M. Shugrin, “Media with equations of state that depend on derivatives,”Prikl. Mekh. Tekh. Fiz.,7, No. 2, 35–49 (1996).

    MathSciNet  Google Scholar 

  32. L. V. Ovsyannikov,Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

the present location of work: Universite of Aix-Marseille III, Marseille 13397

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 39–54, September–October, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilyuk, S.L., Perepechko, Y.V. Variational approach to constructing hyperbolic models of two-velocity media. J Appl Mech Tech Phys 39, 684–698 (1998). https://doi.org/10.1007/BF02468039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02468039

Keywords

Navigation