Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 38, Issue 5, pp 774–783 | Cite as

Compatibility conditions of small deformations and stress functions

  • N. I. Ostrosablin
Article

Keywords

General Solution Stress Equation Elasticity Theory Compatibility Condition Stress Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. O. Kuz'min, “Maxwell and Morera formulas in elasticity theory,”Dokl. Akad. Nauk SSSR, Nov. Ser.,49, No. 5, 335–337 (1945).Google Scholar
  2. 2.
    C. Weber, “Spannungsfunktionen des dreidimensionalen Kontinuums,”ZAMM,28, Nos. 7/8, 193–197 (1948).MATHGoogle Scholar
  3. 3.
    Yu. A. Krutkov,The Tensor of Stress Functions and General Solutions in Statics of Elasticity Theory [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1949).Google Scholar
  4. 4.
    V. I. Blokh, “Stress functions in elasticity theory,”Prikl. Mat. Mekh.,14, No. 4, 415–422 (1950).Google Scholar
  5. 5.
    H. Schaefer, “Die Spannunqsfunktionen des dreidimensionalen Kontinuums und des elastischen Körpers,”ZAMM,33, Nos. 10/11, 356–362 (1953).MATHMathSciNetGoogle Scholar
  6. 6.
    H. L. Langhaar and M. Stippes, “Three-dimensional stress functions,”J. Franklin Inst.,258, No. 5, 371–382 (1954).MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Kröner, “Die Shannungsfunktionen der dreidimensionalen anisotropen Elastizitätstheorie,”Z. Phys.,141, No. 3, 386–398 (1955).MATHADSCrossRefGoogle Scholar
  8. 8.
    K. Washizu, “A note on the conditions of compatibility,”J. Math. Phys.,36, No. 4, 306–312 (1958).MATHMathSciNetGoogle Scholar
  9. 9.
    V. M. Proshko, “Version of the derivation of Saint Venant compatibility equations,” in:Investigations of Structure Theory [in Russian], No. 8, Gosstroiizdat, Moscow (1959), pp. 579–580.Google Scholar
  10. 10.
    C. Truesdell, “Invariant and complete stress functions for general continua,”Arch. Rat. Mech. Anal.,4, No. 1, 1–29 (1959).MathSciNetGoogle Scholar
  11. 11.
    B. E. Pobedrya, “On problems in terms of stresses,”Dokl. Akad. Nauk SSSR,240, No. 24, 564–567 (1978).MATHMathSciNetGoogle Scholar
  12. 12.
    M. Stippes, “On stress functions in classical elasticity,”Quart. Appl. Math.,24, No. 2, 119–125 (1966).MATHGoogle Scholar
  13. 13.
    D. E. Carlson, “A note on the Beltrami stress functions,”ZAMM,47, No. 3, 206–207 (1967).Google Scholar
  14. 14.
    B. F. Vlasov, “On integration of continuity equations of strains in the Saint Venant form,”Prikl. Mekh.,5, No. 12, 35–38 (1969).Google Scholar
  15. 15.
    B. F. Vlasov, “On continuity equations of deformations,”Prikl. Mekh.,6, No. 11, 85–90 (1970).Google Scholar
  16. 16.
    B. F. Vlasov, “Equations for determination of the Morera and Maxwell stress functions,”Dokl. Akad. Nauk SSSR,197, No. 1, 56–58 (1971).MATHGoogle Scholar
  17. 17.
    V. S. Kalinin, “On the solution of the direct problem of linear elastic theory in terms of stresses,” in:Problems of Mechanics of Ships [in Russian], Sudostroyenie, Leningrad (1973), pp. 105–112.Google Scholar
  18. 18.
    V. A. Kiselev, “Certain relations under continuity conditions of continuum deformation,”Tr. Mosk. Avt.-Dor. Inst., No. 61, 126–131 (1973).Google Scholar
  19. 19.
    V. A. Likhachev and N. P. Fleishman, “Beltrami-Mitchell compatibility conditions,”Dokl. Akad. Nauk SSSR, Ser. A, No. 9, 45–47 (1984).MATHMathSciNetGoogle Scholar
  20. 20.
    L. A. Rozin, “New formulations of elastic problems in terms of stresses,”Izv. Inst. Gidrotekh.,180, 75–84 (1985).Google Scholar
  21. 21.
    É. G. Saifullin, A. V. Sachenkov, and R. M. Timerbaev, “Basic equations of elasticity theory in terms of stresses and displacements,” in:Investigations of Plate and Shell Theory [in Russian], No. 18, Part 1, Kazan' (1985), pp. 66–79.Google Scholar
  22. 22.
    V. I. Malyi, “One representation of the compatibility conditions of strains,”Prikl. Mat. Mekh.,50, No. 5, 872–875 (1986).Google Scholar
  23. 23.
    V. I. Malyi, “Independent compatibility conditions of stresses for an elastic isotropic body,”Dokl. Akad. Nauk SSSR, Ser. A, No.7, 43–46 (1987).Google Scholar
  24. 24.
    A. G. Kurosh,Course of Higher Algebra [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  25. 25.
    Hong-quing Zhang and Guang Yang, “Constructions of the general solution for a system of partial differential equations with variable coefficients,”Appl. Math. Mech.,12, No. 2, 149–153 (1991).MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. N. Konovalov and S. B. Sorokin, “Structure of elastic equations. Statistical problem,” Preprint No. 665, Comp. Center, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1986).Google Scholar
  27. 27.
    N. M. Borodachev, “Spatial elastic problems in terms of strains,”Probl. Prochn., Nos. 5–6, 69–73 (1995).Google Scholar
  28. 28.
    N. M. Borodachev, “One approach to the solution of the spat'al elastic problem in terms of stresses,”Prikl. Mekh.,31, No. 12, 38–44 (1995).MATHGoogle Scholar
  29. 29.
    V. V. Vasil'ev and L. B. Fedorov, “The elastic problem in terms of stresses,”Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 82–92 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • N. I. Ostrosablin

There are no affiliations available

Personalised recommendations