Three theorems on the error of solution of different equations of the theory of shells with a singular right side

  • V. V. Nerubailo
Article
  • 20 Downloads

Keywords

Cylindrical Shell Radial Displacement Approximate Equation Harmonic Number Shallow Shell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Z. Vlasov,The General Theory of Shell and Its Applications in Engineering (Selected papers) [in Russian], Vol. 1, Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  2. 2.
    I. F. Obraztsov, B. V. Nerubailo, and I. V. Andrianov,Asymptotic Methods in the Structure Mechanics of Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1991).Google Scholar
  3. 3.
    B. V. Nerubailo,Local Problems of the Strength of Cylindrical Shells [in Russian], Mashinostroenic, Moscow (1983).Google Scholar
  4. 4.
    A. L. Gol'denveizer,Theory of Thin Elastic Shells [in Russian], Nauka, Moscow (1976).Google Scholar
  5. 5.
    B. V. Nerubailo and V. A. Sibiryakov, “On the question of the error of the Donnel-Vlasov equations,”Prikl. Mekh.,6, No. 6, 112–115 (1970).Google Scholar
  6. 6.
    V. V. Novozhilov and R. L. Finkel'shtein “On the error of the Kirchhoff-Love hypothesis in the theory of shells,”Prikl. Mat. Mekh.,7, 331–340 (1943).Google Scholar
  7. 7.
    Kh. M. Mushtaru, “On the region of applicability of the Kirchhoff-Love approximate shell theory,”Prikl. Mat. Mekh.,11, No. 5, 517–520 (1947).Google Scholar
  8. 8.
    N. J. Hoff, “The accuracy of Donnell's equations,”J. Appl. Mech.,22, No. 3, 329–334 (1955).MATHGoogle Scholar
  9. 9.
    J. Kempner, “Remarks on Donnel's equations,”J. Appl. Mech.,22, No. 1, 117–118 (1955).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. V. Nerubailo

There are no affiliations available

Personalised recommendations