Skip to main content
Log in

Delayed fracture of aluminum alloys

  • Strength
  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusions

  1. 1.

    The susceptibility of aluminum alloys to delayed fracture is connected with the nonuniform decomposition of the solid solution and its low stability. The service life of a part is the shorter the higher the anisotropy of grain boundary fracture, the higher the level of residual stresses, and the lower the threshold stress in the tests for corrosion cracking.

  2. 2.

    The susceptibility of aluminum alloys to corrosion cracking can be eliminated or considerably reduced by using controlled cooling in quenching in combination with artificial aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Kudryashov and V. I. Smolentsev,Fracture Toughness of Aluminum Alloys [in Russian], Metallurgizdat, Moscow (1976).

    Google Scholar 

  2. J. R. Rice and M. A. Jonson.The Role of Large Crack Tip Geometry Changes in Plane Strain Fracture, Inelastic Behavior of Solids, Kanninen Ed. (1970).

  3. D. Broek,Elementary Engineering Fracture Mechanics, Noordhoff, Leyden (1974).

    Google Scholar 

  4. Fractography and an Atlas of Fractograms, A Reference Book [in Russian], Metallurgizdat, Moscow (1982).

  5. O. N. Mikhailov (ed.),Residual Stresses in Preforms and Parts of Large Machines [in Russian], Uralmashzavod, Sverdlovsk (1971).

    Google Scholar 

  6. G. L. Shneider, “Some special features of fracture in large semiproducts from aluminum alloys,”Metalloved. Term. Obrab. Met., No. 3, 2–7 (1997).

    Google Scholar 

  7. I. N. Fridlyander, K. Shperlink, V. Otchenashek, and L. N. Leshchiner, “Properties and propagation behavior of a crack in pressed shapes from Al−Cu−Li alloys,”Metalloved. Term. Obrab. Met., No. 11, 36–38 (1993).

    Google Scholar 

  8. G. L. Shneider and A. M. Drits, “Hardenability of aluminum-lithium alloys,”Metalloved. Term. Obrab. Met., No. 9, 26–30 (1995).

    Google Scholar 

  9. G. L. Shneider, L. M. Sheveleva, Yu. V. Shchelbanin, and Yu. P. Plotnikov, “Controlled cooling of stampings from alloy 1420,”Tekhnol. Legk. Splavov, No. 4, 29–30 (1992).

    Google Scholar 

  10. G. L. Shneider, L. M. Sheveleva, N. A. Parkhomenko, and A. D. Petrov, “Dependence of service characteristics of deformed semiproducts from alloy 1420 on the parameters and components of morphology and structure,”Tsvet. Met., No. 11, 52–54 (1993).

    Google Scholar 

  11. E. Kodzima, “Aluminum-lithium alloys,”Keykindzoku,39(1), 67–80 (1989).

    Google Scholar 

  12. G. L. Shneider, L. M. Sheveleva, and E. Ya. Kaputkin, “Phase transformations in heat treatment of alloy 1420,”Tsvet. Met., No. 2, 49–52 (1994).

    Google Scholar 

  13. A. I. Nikolaichik and V. N. Bespal'ko, “Residual stresses in stampings from aluminum alloys and parts produced from them,”Tekhnol. Legk. Splavov, No. 7, 24–27 (1981).

    Google Scholar 

  14. G. L. Shncider, A. G. Vovnyanko, E. A. Dardin, and V. V. Merzlyuk, “Residual stresses in semiproducts and parts from aluminum alloys,”Tekhnol. Legk Splavov, No. 10, 9 (1983).

    Google Scholar 

  15. G. L. Shneider, “Phase transformations in heat treatment of aluminum-lithium alloys and optimization of service properties of semiproducts produced from them,”Metalloved. Term. Obrab. Met., No. 1, 24–30 (1998).

    Google Scholar 

  16. G. L. Shneider, “Stability of supersaturated solid solution of aluminum-lithium alloy 1470,”Metalloved. Term. Obrab. Met., No. 7, 31–35 (1998).

    Google Scholar 

  17. G. L. Shneider, A. M. Drits, N. A. Parkhomenko, and T. V. Krymova, “Stability of superstautrated solid solution of alloy 1450,”Metalloved. Term. Obrab. Met., No. 6, 6–8 (1993).

    CAS  Google Scholar 

  18. G. L. Shneider, S. F. Danilov, and E. N. Malysheva “Stability of supersaturated solid solution of alloy 1421,”Tsvet. Met., No. 3, 52–54 (1993).

    Google Scholar 

  19. A. G. Vovnyanko, A. P. Kovtun, Z. N. Kolganova, and G. L. Shneider, “Regular features in the variation of properties in forgings and stampings from aluminum alloys,”Tekhnol Legk. Splavov, Nos. 11–12, 24–31 (1982).

    Google Scholar 

  20. G. L. Shneider, “Dependencies of the characteristics of static and cyclic crack resistance of large forged semiproducts from aluminum alloys 1993 and V95 on the cooling rate in quenching,”Metalloved. Term. Obrab. Met., No. 6, 24–28 (1995).

    Google Scholar 

  21. H. Liebowitz,Fracture, Metals Fracture, in 6 Volumes, Vol. 6, Academic Press, New York, (1971).

    Google Scholar 

  22. H. Liebowitz,Fracture, Engineering Fundamentals and Environmental Effects, in 6 Volumes, Vol. 3, Academic Press, New York (1971).

    Google Scholar 

  23. Patent RF No. 1762573, C22G 1/047, “A method for heat treatment of alloys in the aluminum-magnesium-lithium system,”Otkr. Izobr. (1990).

  24. Patent RF, No. 20485911, C22F 1/047, “A method for heat treatment of semiproducts from deformable aluminum-lithium alloys,”Otkr. Izobr., No. 32 (1994).

  25. V. V. Kafel'nikov, “Relation between the coefficient of stress intensityK lsscc and the threshold stress σcr in corrosion cracking of materials,” in:Proc. Int. Congr. “Protection-95” [in Russian], Moscow (1995), p. 111.

  26. OST 1 90352-95, Aluminum and magnesium alloys. Method for determining the threshold coefficient of stress intensity in corrosion cracking K lscc [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp 18–25, March, 1999.

As a matter for discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shneider, G.L., Sheveleva, L.M. & Kafel'nikov, V.V. Delayed fracture of aluminum alloys. Met Sci Heat Treat 41, 109–116 (1999). https://doi.org/10.1007/BF02467695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02467695

Keywords

Navigation