Skip to main content
Log in

Hydrogen in metals and alloys

  • Russian Metallurgist Association. Chernov Lectures
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Boris Nikolaevich Kolachev is a doctor of science, professor of the K. É. Tsiolkovsky Moscow Aircraft Engineering Institute, honored scientist and engineer of the Russian Federation, full member of the New York Academy of Sciences winner of the Chernov prize (1968) and State Prize of the USSR (1986), and the author of 17 monographs 6 textbooks, and over 380 papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Livanov, A. A. Bukhanova, and B. A. Kolachev,Hydrogen in Titanium [in Russian], Metallurgizdat, Moscow (1962).

    Google Scholar 

  2. G. V. Karpenko and R. I. Krilyakevich,Effect of Hydrogen on the Properties of Steel [in Russian], Metallurgizdat, Moscow (1962).

    Google Scholar 

  3. B. A. Kolachev,Hydrogen Embrittlement of Nonferrous Metals [in Russian], Metallurgiya, Moscow (1966).

    Google Scholar 

  4. L. S. Moroz and B. B. Chechulin,Hydrogen Embrittlement of Metals [in Russian], Metallurgiya Moscow (1967).

    Google Scholar 

  5. B. A. Kolachev, V. A. Livanov, and A. A. Bukhanova,Mechanical Properties of Titanium and Its Alloys [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  6. V. I. Shapovalov,Effect of Hydrogen on the Structure and Properties of Iron-Carbon Alloys [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  7. Yu. I. Archakov,Hydrogen Corrosion of Steel [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  8. B. A. Kolachev,Hydrogen Embrittlement of Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  9. V. I. Shapovalov and V. V. Trofimenko,Flakes and Hydrogen Control in Steel [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  10. B. A. Kolachev, “Hydrogen embrittlement of metals,”Itogi Nauki Tekh., Metalloved. Term. Obrab.,23, 3–46 (1989).

    Google Scholar 

  11. A. D. Pogorelyi,The Theory of Metallurgical Processes [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  12. V. K. Nosov and B. A. Kolachev,Hydrogen Plasticizing in Hot Deformation of Titanium Alloys [in Russian], Metallurgiya. Moscow (1986).

    Google Scholar 

  13. B. A. Kolachev, “Reversible hydrogen alloying of titanium alloys,”Metalloved. Term. Obrab. Met., No. 10, 28–32 (1993).

    Google Scholar 

  14. B. A. Kolachev and V. D. Talalaev, “The hydrogen technology of titanium alloys,”Titan, No. 1, 43–46 (1993).

    Google Scholar 

  15. R. A. Andrievskii,The Metal Science of Hydrides [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  16. B. A. Kolachev, R. E. Shalin, and A. A. Il'in,Alloys That Accumulate Hydrogen [in Russian], Metallurgiya, Moscow (1995).

    Google Scholar 

  17. B. A. Kolachev, V. V. Sadkov, V. D. Talalaev, and A. V. Fishgoit,Vacuum Annealing of Titanium Structures [in Russian], Mashinostroenie, Moscow (1991).

    Google Scholar 

  18. A. G. Bratukhin, B. A. Kolachev, V. V. Sadkov, et al.,The Production Process of Titanium Aircraft Structures [in Russian], Mashinostroenie, Moscow (1995).

    Google Scholar 

  19. Chitu Georghe,Metallurgia, No. 8, 34–39 (1964).

    Article  Google Scholar 

  20. V. N. Tsurkov, I. V. Paisov, and Yu. A. Bashnin, “Effect of heat treatment on the content and distribution of hydrogen in large forgings,”Stal', No. 8, 742–775 (1967).

    Google Scholar 

  21. V. V. Kuznetsov, G. V. Khldeev, and V. I. Kichigin,Hydrogen Charging of Metals in Electrolytes [in Russian], Mashinostroenie, Moscow (1993).

    Google Scholar 

  22. E. S. Tovpenets, T. M. Molodtsova, and E. N. Kotlyar, “Effect of hydrogen-relief annealing on the properties of steels 40Kh and 34Kh3M,”Metalloved. Term. Obrab. Met., No. 10, 64–66 (1966).

    Google Scholar 

  23. V. I. Zaika, V. A. Gashutin, V. A. Kharchenko, et al., “Development and substantiation of heat-treatment regimes for high-strength steels for removing hydrogen embrittlement,” in:Improving the Quality of Heat Treatment of Rolled Stock [in Russian], Moscow (1986), pp. 16–18.

  24. B. A. Kolachev and A. V. Mal'kov,Physical Fundamentals of Titanium Fracture [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

  25. I. Yu. Konnova, V. I. Malkin, and N. A. Pavlenko, “Mechanical properties, structure, and resistance to hydrogen embrittlement of low-alloy binary ferrite-martensite steels,” in.Improvement of Operational Characteristics of Steels and Alloys by Optimizing the Alloying and the Heat Treatment [in Russian], Moscow (1986), pp. 38–42.

  26. A. Yu. Kazanskaya, M. A. Smirnov, and V. V. Zabil'skii, “Effect of high-temperature treatment on hydrogen embrittlement of structural steel,”Fiz. Met. Metalloved., No. 8, 201–203 (1990).

    Google Scholar 

  27. V. I. Malkin, I. Yu. Konnova, V. N. Zikeev, et al., “Effect of nickel content on the microstructure and susceptibility of hydrogen embrittlement of steel 09KhG2NAB,”Izv. Akad. Nauk SSSR, Met., No. 6, 128–132 (1986).

    Google Scholar 

  28. V. N. Zikeev, “Novel structural steel resistant to hydrogen embrittlement,”Stal', No. 3, 64–67 (1982).

    Google Scholar 

  29. “HIC resistant steel plates for pressure vessels,”Kobelcko Technol. Rev., No. 4, 45 (1988).

  30. V. N. Zikeev, Yu. V. Kornyushenkova, V. V. Izvol'skii, et al., “Effect of copper and heat treatment regime on the resistance of steel 20KhM to cold hydrogen embrittlement,” in:Heat Treatment and Metal Science of Advanced Steels and Alloys [in Russian], Moscow (1983), pp. 46–48.

  31. S. A. Golovanenko and T. K. Sergeeva, “Microstructural aspects of fracture in hydrogen embrittlement of gas-main steels,”Stal', No. 7, 73–78 (1984).

    Google Scholar 

  32. M. I. Gasik, Ch. D. Ismailov, V. V. Trofimenko, et al., “Nature of inclusions and hydrogen resistance of carbon steel modified by selenium or tellurium,”Izv. Vuzov. Chern. Met., No. 9, 52–56 (1988).

    Google Scholar 

  33. A. N. Rubtsov, Yu. G. Olesov, and M. M. Antonova,Hydration of Titanium Materials [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  34. B. A. Kolachev, A. A. Il'in, and I. M. Mamonov, “Thermal hydrogen treatment of titanium alloys,” in:Metal Science and Heat Treatment of Titanium and High-Temperature Alloys [in Russian], VILS, Moscow (1991), pp. 132–142.

    Google Scholar 

  35. B. A. Kolachev, V. D. Talalaev, Yu. B. Egorova, et al., “On the nature of the favorable effect of hydrogen on the machinability of titanium alloys,” in:Science, Production and Use of Titanium under Conditions of Conversion [in Russian], Vol. 2, VILS, Moscow (1994), pp. 873–882.

    Google Scholar 

  36. B. A. Kolachev, V. V. Shevshenko, I. D. Nizkin, and P. D. Drozdov, “Theoretical substantiation of the manufacturing process of parts from titanium waste without its remelting,”Izv. Vuzov, Tsvet. Met., No. 4, 60–65 (1997).

    Google Scholar 

  37. A. M. Nadezhin and E. M. Bibikov, “A complex production process for fabricating quality cast parts from titanium alloys on the basis of hydrogen technology,” in:Science, Production, and Use of Titanium under Conditions of Conversion [in Russian], Vol. 1, VILS, Moscow (1994), pp. 263–274.

    Google Scholar 

  38. B. A. Kolachev, A. A. Il'in, and V. K. Nosov, “Hydrogen embrittlement as new perspective type of titanium alloy processing,” in:Advances in the Science and Technology of Titanium Alloy Processing, TMS, Warrendalle, Pennsylvania (1996), pp. 331–338.

    Google Scholar 

  39. A. A. Il'in, V. K. Nosov, and M. Y. Kollerov, “Hydrogen technology of semiproducts and finished goods production from high-strength titanium alloys,” in:Advances in the Science and Technology of Titanium Alloy Processing, TMS, Anaheim, California (1997), pp. 517–523.

    Google Scholar 

  40. A. V. Ovchinnikov, A. M. Mamonov, and V. M. Chugunova, “Operational characteristics of parts from alloy VT25U fabricated by hydrogen technology,” in:Science, Production, and Use of Titanium under Conditions of Conversion, 1st Int. CIS Conf. on Titanium [in Russian], VILS, Moscow (1994), pp. 492–499.

    Google Scholar 

  41. V. K. Nosov, A. A. Il'in, V. N. Uvarov, et al., “Hydrogen plasticizing and thermohydrogen treatment in fabricating semiproducts from alloys based on Ti3Al,” in:Science, Production, and Use of Titanium under Conditions of Conversion, 1st Int. CIS Conference on Titanium [in Russian], Vol. 2, VILS, Moscow (1994), pp. 668–674.

    Google Scholar 

  42. V. K. Nosov, S. B. Belova, and I. N. Chesnokov, “Ductility and deformation resistance of titanium alloy VT5-1 alloyed with hydrogen,”Metally, No. 6, 76–82 (1995).

    Google Scholar 

  43. B. A. Kolachev, A. V. Mal'kov, I. D. Nizkin, et al., “On the possibility of decreasing the temperature of hot heading of bolts from alloy VT16 by reversible alloying with hydrogen,”Izv. Akad, Nauk SSSR. Met., No. 3, 67–70 (1991).

    Google Scholar 

  44. R. J. Lederich, S. M. L. Sastry, and J. E. O'Neal, “Microstructure refining for superplastic forming optimization in titanium alloys,” in:Titanium Science and Technol., 5th Conf. on Titanium, Vol. 2, Munch. Oberursel (1984), pp. 695–702.

  45. B. A. Kolachev and V. K. Nosov, “Hydrogen plasticizing and superplasticity of titanium alloys,”Fiz. Met. Metalloved.,57, Issue 2, 288–297 (1984).

    CAS  Google Scholar 

  46. W. R. Kerr, M. E. Smith, F. G. Rosenblum, et al., “Hydrogen, as an alloying element in titanium (hydrovac),” in:Titanium 80: Sci. Technol., Proc. 4th Int. Conf. on Titanium, Kyoto, 1980, pp. 2477–2486.

  47. D. Eylon, F. H. Froes, and W. J. Barice, “Property improvement of titanium alloy castings by microstructure modification,” in:W.−Ti−Re−Sh'88, Proc. 1st Int. Conf. Beijing, Oxford, etc., 1989, Vol. 2, pp. 824–833.

  48. Zhang Shaoging and Pan Feng, “Hydrogen treatment of cast Ti-6Al-4V alloy”Chin. J. Met. Technol., 6, 187–192 (1990).

    Google Scholar 

  49. F. H. Frous and J. E. Smugerski (eds.),Powder Metallurgy of Titanium Alloys [Russian translation], Metallurgiya, Moscow (1985).

    Google Scholar 

  50. Yang Ke, Zhou Chaohui, and Li Dongfa,Rare Metal Mater. Eng.,26(1), 11–18 (1997).

    Google Scholar 

  51. P. J. Mc Guiness, X. J. Zhang, X. J. Yin, and I. R. Harris, “Hydrogenation, disproprotionation and desorption (HDD): an effective processing route for Nd−Fe−B type magnets,”J. Less-Common Metals,158, 359–365 (1990).

    Article  Google Scholar 

  52. W. R. Wampler, T. Schober, and B. Lengeler,Phil. Mag.,34, 129 (1976).

    CAS  Google Scholar 

  53. B. A. Kolachev, R. M. Gabidullin, and Yu. V. Piguzov,Heat-Treatment Technology for Nonferrous Metals and Alloys [in Russian], Metallurgiya, Moscow (1992).

    Google Scholar 

  54. F. Erdmann-Jesnitzer, “Hydrogen is a useful alloy element in metal alloys,” in:2nd Int. Cong. on Hydrogen in Metals. Paris, 1977, pp. 1–6.

  55. V. A. Goltsov, “Hydrogen treatment of metals,”Int. J. Hydrogen Energy,22(43), 119–124 (1997).

    Article  CAS  Google Scholar 

  56. Hydrogen Treatment of Materials, Coll. Inform. Mater. 1st Int. Conf. VOM-95, Donetsk, 1995 [in Russian].

Download references

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 3–11, March, 1999.

25th Chernov Lectures, November 27, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolachev, B.A. Hydrogen in metals and alloys. Met Sci Heat Treat 41, 93–100 (1999). https://doi.org/10.1007/BF02467692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02467692

Keywords

Navigation