Metal Science and Heat Treatment

, Volume 39, Issue 8, pp 354–357 | Cite as

On brittle fracture under the conditions of high-temperature creep

  • R. A. Arutyunyan
Discussion on the Problem of Brittle Fracture


As a rule, brittle fracture is associated with the presence of a Griffiths crack. In this case, the cause of instantaneous fracture is the crack growth. The accumulation of pores and the embrittlement of the initially ductile metals under the action of a long-term temperature effect also causes unpredictable brittle fracture. An attempt to analyze and predict such fracture is made in the present work.


Brittle Fracture Pure Copper Creep Condition Recrystallization Temperature Diffusion Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. N. Rabotnov,Creep of Structure Parts [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    L. M. Kachanov,The Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    V. R. Regel, A. I. Slutsker, and É. E. Tomashevskii,The Kinetic Nature of Strength of Solid Bodies [in Russian], Nauka, Moscow (1974).Google Scholar
  4. 4.
    V. V. Novozhilov, “On plastic loosening,”Prikl. Mat. Mekh., No. 4, 681–680 (1965).Google Scholar
  5. 5.
    I. Cadek,Crepp Kovovych Materialu, Academia, Prague (1984).Google Scholar
  6. 6.
    R. Boettner and W. Robertson, “A study of the growth of voids in copper during the creep process by measurement of the accompanying change in density,”Trans. Metallurg. Soc. AIME,221(3), 613–622 (1961).Google Scholar
  7. 7.
    L. Brathe, “Macroscopic measurements of creep damage in metals,”Scand. J. Metall.,7(5), 199–203 (1978).Google Scholar
  8. 8.
    D. Hanson and M. Wheeler, “The deformation of metals under prolonged loading. Part I. The flow and fracture of aluminum,”J. Inst. Met.,45, 229–264 (1931).Google Scholar
  9. 9.
    D. Woodford, “Density changes during creep in nickel,”Metal Sci.,3(11), 234–240 (1969).Google Scholar
  10. 10.
    R. Bowring, P. Davies, and B. Wilshire, “The strain dependence of density changes during creep,”Metal Sci., No. 9, 168–171 (1968).Google Scholar
  11. 11.
    B. I. Kumanin, L. A. Kovaleva, and S. V. Alekseev,Long-Term Strength of Metals under Creep Conditions [in Russian], Metallurgiya. Moscow (1988).Google Scholar
  12. 12.
    G. Piatti, R. Lubek, and R. Matera, “Kavitation,”Schweiz. Tech. Zeit.,70(34–35), 698–703 (1973).Google Scholar
  13. 13.
    R. A. Arutyunyan, “On brittle fracture under creep conditions,”Probl. Prochn., No. 11, 30–32 (1986).Google Scholar
  14. 14.
    R. Kranz and C. Scholz, “Critical dilatant volume of rocks at the onset of tertiary creep,”J. Geophys. Res.,82(3), 4839–4898 (1977).Google Scholar
  15. 15.
    J. Cane and C. Middleton, “Intergranular creep-cavity formation in lowalloy bainitic steels,”Metal Sci.,15(7), 295–301 (1981).Google Scholar
  16. 16.
    J. Intrater and E. Machlin, “Grain boundary sliding and intercrystalline cracking,”Acta Metall.,7, 140–143 (1959).CrossRefGoogle Scholar
  17. 17.
    L. R. Botvina, “Phase transformations in fracture processes and crystallization,”Dokl. Ross. Akad. Nauk,340(5), 617–621 (1995).Google Scholar
  18. 18.
    R. A. Arutyunyan, “On the role of porosity in processes of viscous flow and brittle fracture in creep,”Dokl. Ross. Akad. Nauk,352(2), 190–192 (1997).Google Scholar
  19. 19.
    V. M. Rozenberg,The Fundamentals of High-Temperature Strength of Metallic Materials [in Russian], Metallurgiya, Moscow (1973).Google Scholar
  20. 20.
    A. J. Kennedy,Creep and Fatigue in Metals [Russian translation], Metallurgiya, Moscow (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • R. A. Arutyunyan
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations