Advertisement

Chromatographia

, Volume 49, Issue 5–6, pp 343–346 | Cite as

Capillary electrophoresis study of human serum albumin binding to basic drugs

  • Y. S. Ding
  • X. F. Zhu
  • B. C. Lin
Short Communications

Summary

The applicability of capillary electrophoresis/frontal analysis (CE/FA) for determining the binding constants of the drugs propranolol (PRO) and verapamil (VER) to human serum albumin (HSA) was investigated. After direct hydrodynamic injection of a drug-HAS mixture solution into a coated capillary (32 cm × 50 μm i.d.), the basic drug was eluted as a zonal peak with a plateau region under condition of phosphate buffer (pH 7.4; ionic strength 0.17) at 12 kV positive running voltage. The unbound drug concentrations measured from the plateau peak heights had good correlation coefficients,r>0.999. Employing the Scatchard plot, the Klotz plot and nonlinear regression, the drug protein binding parameters, the binding constant and the number of binding sites on one protein molecule, were obtained. The binding constant obtained was compared to a reported equilibrium dialysis result and they are basically in good agreement.

Key Words

Capillary electrophoresis Frontal analysis Binding constants Basic drugs Human serum albumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. L. Rundlett, D. W. Armstrong, Electrophoresis18, 2194 (1997).CrossRefGoogle Scholar
  2. [2]
    M. H. A. Busch, L. B. Carels, H. F. M. Boelens, J. C. Kraak, H. Poppe, J. Chromatogr. A777, 311 (1997).CrossRefGoogle Scholar
  3. [3]
    G. Rippel, H. Corstjens, H. A. H. Billiet, J. Frank, Electrophoresis18, 2175 (1997).CrossRefGoogle Scholar
  4. [4]
    J. C. Kraak, S. Busch, H. Poppe, J. Chromatogr.608, 257 (1992).CrossRefGoogle Scholar
  5. [5]
    F. A. Gomez, L. Z. Avila, Y. Chu, G. M. Whitesides, Anal. Chem.66, 1785 (1994).CrossRefGoogle Scholar
  6. [6]
    M. H. A. Busch, H. F. M. Boelens, J. C. Kraak, J. Chromatogr. A.775, 313 (1997).CrossRefGoogle Scholar
  7. [7]
    T. Ohara, A. Shibukawa, T. Nakagawa, Anal. Chem.,67, 3520 (1995).CrossRefGoogle Scholar
  8. [8]
    J. Oravcová, B. Böhs, W. Linder, J. Chromatogr. B677, 1 (1996).Google Scholar
  9. [9]
    M. H. A. Busch, H. F. M. Boelens, J. C. Kraak, H. Poppe A. A. P. Meekel, M. Resmini, J. Chromatogr. A744, 195 (1996).CrossRefGoogle Scholar
  10. [10]
    A. Shibukawa, Y. Yoshimoyo, T. Ohara, T. Nakagawa, J. Pharma. Sciences83(5), 616 (1994).Google Scholar
  11. [11]
    G. Scatchard, Ann. N. Y. Acad. Sci.51, 660 (1949).Google Scholar
  12. [12]
    I. M. Klotz, D. L. Hunston, Biochemistry10, 3065 (1971).CrossRefGoogle Scholar
  13. [13]
    U. K. Walle, T. Walle, S. A. Bai, I. S. Olanoff, Clin. Pharmacol. Ther.34, 263 (1983).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • Y. S. Ding
    • 1
  • X. F. Zhu
    • 1
  • B. C. Lin
    • 1
  1. 1.Dalian Institute of Chemical PhysicsThe Chinese Academy of SciencesDalianP.R. China

Personalised recommendations