Chromatographia

, Volume 49, Issue 1–2, pp 28–34 | Cite as

Characterization of the transmembrane serine receptor by capillary zone electrophoresis

  • B. C. Nelson
  • S. Malik
  • S. K. Seeley
  • P. C. Uden
Originals

Summary

Capillary zone electrophoresis (CZE) was applied to the characterization of the transmembrane serine receptor in biosynthetic samples. The serine receptor, otherwise known as Tsr (taxis to serine and repellents), is a ∼ 60,000 Dalton intrinsic membrane protein whose periplasmic domain (ligand binding domain) reversibly binds the amino acid serine. In general, the electrophoresis of intrinsic membrane proteins is difficult due to severe solubility problems and adsorption which occurs during the electrophoretic run. This is due to the tendency of these types of proteins to undergo aggregation, self-aggregation and precipitation in aqueous environments. The addition of percentage levels of the surfactant, sodium dodecyl sulfate (SDS), to a tetraborate run buffer was shown to be effective both in enhancing the solubility of intact Tsr and in preventing the adsorption of intact Tsr to the fused-silica capillary wall during electrophoretic analysis. Critical separation parameters such as run buffer concentration, surfactant concentration and surfactant type were optimized to give the best separation profiles.

Key Words

Capillary electrophoresis Membrane proteins Serine receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Josic, K. Zeilinger, W. Reutter, J. Chromatogr.516, 89 (1990).CrossRefGoogle Scholar
  2. [2]
    M. Zhu, R. Rodriquez, T. Wehr, C. Siebert, J. Chromatogr.608, 225 (1992).CrossRefGoogle Scholar
  3. [3]
    J. C. Kraak, S. Busch, H. Poppe, J. Chromatogr.608, 257 (1992).CrossRefGoogle Scholar
  4. [4]
    M. Gilges, H. Husmann, M. Kleemib, S. R. Motsch, G. Schomburg, J. High Resolut. Chromatogr.15, 452 (1992).CrossRefGoogle Scholar
  5. [5]
    N. A. Guzman, J. Moschera, K. Iqbal, A. W. Malick, J. Chromatogr.608, 197 (1992).CrossRefGoogle Scholar
  6. [6]
    F. Foret, E. Szoko, B. L. Karger, J. Chromatogr.608, 3 (1992).CrossRefGoogle Scholar
  7. [7]
    H. Lindner, W. Helliger, A. Dirschlmayer, H. Talasz, M. Wurm, B. Sarg, M. Jaquemar, B. Puschendorf, J. Chromatogr.608, 211 (1992).CrossRefGoogle Scholar
  8. [8]
    J. W. Jorgenson, K. D. Lukacs, Science222, 266 (1983).Google Scholar
  9. [9]
    M. V. Novotny K. A. Cobb, J. Liu, Electrophoresis11, 735 (1990).CrossRefGoogle Scholar
  10. [10]
    M. M. Gordon, K. J. Lee, R. N. Zare, A. A. Arias, Anal. Chem.63, 69 (1991).CrossRefGoogle Scholar
  11. [11]
    W. J. Lambert, D. L. Middleton, Anal. Chem.62, 1585 (1990).CrossRefGoogle Scholar
  12. [12]
    L. Zolla, M. Bianchetti, A. Timperio, G. Mugnozza, D. Corradini, Electrophoresis17, 1597 (1996).CrossRefGoogle Scholar
  13. [13]
    J. S. Green, J. W. Jorgenson, J. Chromatogr.478, 63 (1989).CrossRefGoogle Scholar
  14. [14]
    F. A. Chen, L. Kelly, R. Palmieri, R. Biehler, H. E. Schwartz, J. Liq. Chromatogr.15, 1143 (1992).Google Scholar
  15. [15]
    M. M. Bushey, J. W. Jorgenson, J. Chromatogr.480, 301 (1989).CrossRefGoogle Scholar
  16. [16]
    D. Schmalzing, C. A. Piggee, F. Foret, E. Carrilho, B. L. Karger, J. Chromatogr.652, 149 (1993).CrossRefGoogle Scholar
  17. [17]
    Z. Zhao, A. Malik, M. L. Lee, Anal. Chem.65, 2747 (1993).CrossRefGoogle Scholar
  18. [18]
    W. G. Muijselaar, C. H. De Bruijn, F. M. Everaerts, J. Chromatogr.605, 115 (1992).CrossRefGoogle Scholar
  19. [19]
    J. K. Towns, F. E. Regnier, Anal. Chem.63, 1126 (1991).CrossRefGoogle Scholar
  20. [20]
    M. Chen, R. M. Cassidy, J. Chromatogr.602, 227 (1992).CrossRefGoogle Scholar
  21. [21]
    T. Tadey, W. Purdy, J. Chromatogr. A652, 131 (1993).CrossRefGoogle Scholar
  22. [22]
    A. Emmer, J. Roeraade, J. Liq. Chromatogr.17, 3831 (1994).Google Scholar
  23. [23]
    T. Hara, S. Kayama, H. Nishida, R. Hakajima, Anal. Sci.10, 223 (1994).Google Scholar
  24. [24]
    M. A. Strege, A. L. Lagu, Anal. Biochem.210, 402 (1993).CrossRefGoogle Scholar
  25. [25]
    E. Wu, F. E. Regnier, Anal. Chem.65, 2029 (1993).CrossRefGoogle Scholar
  26. [26]
    A. M. Arentoft, H. Frokiaer, S. Michaelsen, H. Sorensen, S. Sorensen, J. Chromatogr. A652, 189 (1993).CrossRefGoogle Scholar
  27. [27]
    H. B. Lim, J. J. Lee, K. J. Lee, Electrophoresis16, 674 (1995).CrossRefGoogle Scholar
  28. [28]
    M. Strege, A. Lagu, Electrophoresis16, 642 (1995).CrossRefGoogle Scholar
  29. [29]
    D. G. Long, R. M. Weis, Biochemistry31, 9904 (1992).CrossRefGoogle Scholar
  30. [30]
    D. G. Long, R. M. Weis, Biophys. J.62, 69 (1992).CrossRefGoogle Scholar
  31. [31]
    E. Bogonez, D. E. Koshland, Proc. Natl. Acad. Sci. U.S.A.82, 4891 (1985).CrossRefGoogle Scholar
  32. [32]
    C. Rollins, F. W. Dahlquist, Cell25, 333 (1981).CrossRefGoogle Scholar
  33. [33]
    N. Kaplan, M. I. Simon, J. Bacteriol.170, 5134 (1988).Google Scholar
  34. [34]
    A. M. Callahan, J. S. Parkinson, J. Bacteriol.161, 96 (1985).Google Scholar
  35. [35]
    S. Clarke, D. E. Koshland J. Bacteriol.254, 9695 (1979).Google Scholar
  36. [36]
    M. R. Kehry, F. W. Dahlquist, J. Bacteriol.257, 10378 (1982).Google Scholar
  37. [37]
    H. J. Issaq, I. Z. Atamna, G. M. Muschik, G. M. Janini, Chromatographia32, 155 (1991).CrossRefGoogle Scholar
  38. [38]
    L. Stryer, Biochemistry, W. H. Freeman, New York, 1988.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • B. C. Nelson
    • 1
  • S. Malik
    • 1
  • S. K. Seeley
    • 1
  • P. C. Uden
    • 1
  1. 1.Department of Chemistry, Lederle Graduate Research Tower-AUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations