Lithuanian Mathematical Journal

, Volume 40, Issue 2, pp 140–147 | Cite as

Construction of somep-extensions of the rational number field

  • H. Markšaitis
Article

Abstract

In this paper, we constructp-extensionsK a ,a(modp r ), of degreep 3r,p≠2, r>0, of the field ℚ of rational numbers with ramification pointsp andq. The Galois groupG(K a )/ℚ of the extensionK a /ℚ,a(modp r ), is defined by the generators and relations
$$\sigma ^{p^r } = 1, \tau ^{p^{2r - n} } = 1, \tau ^{p^r } [\tau ,\sigma ]^a = 1, G^{(2)} (K_a /\mathbb{Q}) = \{ 1\}$$
, where the numbern is such thatp n |a andp n+1βa. The form of the relation between two generators of the Galois groupG p (p, q) of the maximalp-extension with two ramification pointsp andq modulo the third term of the descending central series of this group depends on the character of the decomposition of the numberq in the fieldsK a ,a(modp r ).

Key words

Galois group extension ramification points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin, J. Tate,Class Field Theory, Harvard (1961).Google Scholar
  2. 2.
    V. V. Ishkhanov, B. B. Lur’e, D. K. Faddeev,The Embedding Problem in Galois Theory (Translations of Monographs, 165), AMS, Providence (1997).MATHGoogle Scholar
  3. 3.
    H. Markšaitis, Galois, groups ofp-extensions with two ramification points.Lith. Math. J.,40(1), 39–47 (2000).CrossRefGoogle Scholar
  4. 4.
    J. M. Masley, Class groups of abelian number fields, in:Proc. Queen’s Number Th. Conf., 1979, P. Ribenboim (Ed.), Queen’s University, Kingston, Ontario.Google Scholar
  5. 5.
    I. Shafarevich, A new proof of the Kronecker-Weber theorem,Tr. Matem. Inst. AN SSSR,38, 382–387 (1951).MATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • H. Markšaitis
    • 1
  1. 1.Vilnius UniversityVilniusLithuania

Personalised recommendations