Advertisement

Functional Analysis and Its Applications

, Volume 34, Issue 1, pp 52–59 | Cite as

An initial-boundary value problem on the half-line for the MKdV equation

  • I. T. Habibullin
Article

Abstract

The initial-boundary value problem on the half-line for the modified Korteweg-de Vries equation with zero boundary conditions and arbitrary rapidly decaying initial conditions is embedded in the scheme of the inverse scattering method. The corresponding inverse scattering problem is reduced to the Riemann problem on a system of rays in the complex plane.

Keywords

Riemann Problem MKdV Equation Inverse Scattering Problem Inverse Scattering Method Inverse Scatter Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Soliton Theory. Inverse Scattering Method [in Russian], Nauka, Moscow 1980.Google Scholar
  2. 2.
    A. S. Fokas and A. R. Its, “An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates,” Teor. Mat. Fiz.,92, No. 3, 386–403 (1992).MathSciNetGoogle Scholar
  3. 3.
    M. J. Ablowitz and H. J. Segur, “The inverse scattering problem in a semi-infinite interval,” J. Math. Phys.,16, 1054–1066 (1975).MATHCrossRefGoogle Scholar
  4. 4.
    E. K. Sklyanin, “Boundary conditions for integrable equations,” Funkts. Anal. Prilozhen.,21, No. 2, 86–87 (1987).MATHMathSciNetGoogle Scholar
  5. 5.
    V. O. Tarasov, “The integrable initial-boundary value problem on a semiline: nonlinear Schrodinger and sine-Gordon equations,” Inverse Problems,7, No. 3, 435–449 (1991).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    I. T. Habibullin, “On integrability of initial-boundary value problems,” Teor. Mat. Fiz.,86, No. 1, 43–51 (1991).MATHGoogle Scholar
  7. 7.
    I. T. Habibullin, “Symmetries of boundary problems,” Phys. Lett. A,178, No. 5–6, 369–375 (1993).MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Gürel, M. Gürses, and I. Habibullin, “Boundary value problems for integrable equations compatible with the symmetry algebra,” J. Math. Phys.,36, No. 12, 6809–6821 (1995).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Adler, B. Gürel, M. Gürses, and I. Habibullin, “Boundary conditions for integrable equations,” J. Phys. A, Math. Gen.,30, 3505–3513 (1997).MATHCrossRefGoogle Scholar
  10. 10.
    B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, London, 1958.Google Scholar
  11. 11.
    I. M. Krichever, “An analogue of the d’Alambert formula for the equations of a principal chiral field and the sine-Gordon equation,” Dokl. Akad. Nauk SSSR,253, 288–292 (1980).MATHMathSciNetGoogle Scholar
  12. 12.
    M. D. Ramazanov, “A boundary value problem for a class of differential equations,” Mat. Sb.,64, No. 2, 234–261 (1964).MATHMathSciNetGoogle Scholar
  13. 13.
    An Ton Bui, “Initial boundary value problem for the Korteweg-de Vries equation,” J. Differential Equations,25, No. 3, 288–309 (1977).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. V. Faminskii, “A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations,” Trudy Mosk. Mat. Obshch.,51, 54–94 (1988).Google Scholar
  15. 15.
    V. E. Adler, I. T. Habibullin, and A. B. Shabat, “Boundary value problem for the KdV equation on a half-line,” Teor. Mat. Fiz,110, No. 1, 98–113 (1997).MATHGoogle Scholar
  16. 16.
    A. B. Shabat, “The inverse scattering problem,” Differents. Uravn.,15, No. 10, 1824–1835 (1979).MATHMathSciNetGoogle Scholar
  17. 17.
    S. Prössdorf, Einige Klassen singularer Gleichugen, Akademie-Verlag, Berlin, 1977.Google Scholar
  18. 18.
    M. Jimbo and T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II,” Phys. D,2, No. 3, 407–448 (1981).MathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • I. T. Habibullin

There are no affiliations available

Personalised recommendations