Strength of water under pulsed loading

  • A. A. Bogach
  • A. V. Utkin
Article

Abstract

Experiments were performed to study the strength of water under conditions of pulsed extension, which is typical of the interaction between a triangular compression pulse and a free surface. The tests were performed in a wide (40–1000 MPa) range of rariation in the amplitude of the compression pulse at deformation rates of 104−105 sec−1. It is found that as the compression-pulse amplitude increases from 150 to 1050 MPa, the strength of water decreases from 46 to 22 MPa. The deformation rate was found to have little effect on the strength. The possibility of using the model of homogenous nucleation (formation of cavitation nuclei) to interpret the data obtained is discussed.

Keywords

Cavitation Deformation Rate Compression Pulse Spall Strength Hugoniot Curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. B. Zel'dovich, “Theory of occurrence of the new phase. Cavitation,”Zh. Éksp. Teor. Fiz.,12, Nos. 11/12, 525–538 (1942).Google Scholar
  2. 2.
    J. C. Fisher, “The fracture of liquids,”J. Appl. Phys.,19, 1062–1067 (1948).CrossRefADSGoogle Scholar
  3. 3.
    M. Kornfel'd,Elasticity and Strength of Liquids [in Russian], Gostekhteoretizdat, Moscow-Leningrad (1951).Google Scholar
  4. 4.
    V. P. Skripov,Mctasble Liquids [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    G. Flynn, “Physics of acoustic cavitation in a liquid,” in: W. Mason (ed.),Physical Acoustics. Vol. 1:Methods and Devices for Ultrasonic Investigations [Russian translation], Mir, Moscow (1967), pp 7–138.Google Scholar
  6. 6.
    N. A. Roi, “Occurrence and regimes of ultrasonic cavitation (Review),”Akust. Zh.,3, No. 1, 3–21 (1957).Google Scholar
  7. 7.
    M. G. Sirotyuk, “Experimental study of ultrasonic cavitation,” in:Physics and Technology of Strong Ultrasound. Strong Ultrasonic Fields [in Russian], Nauka, Moscow (1968), pp. 167–220.Google Scholar
  8. 8.
    V. K. Kedrinskii, “Nonlinear problems of cavitation fracture of liquids under explosive loading (Review),”Prikl. Mekh. Tekh. Fiz.,34, No. 3, 74–91 (1993).Google Scholar
  9. 9.
    V. K. Kedrinskii, A. S. Besov, and I. É. Gutnik, “Inversion of the two-phase state of a liquid under pulsed loading,”Dokl. Ross. Akad. Nauk,352, No. 4, 477–479 (1997).Google Scholar
  10. 10.
    G. I. Kauel', S. V. Razorenov, A. V. Utkin, and V. E. Fortov,Shock-Wave Phenomena in Condensed Media [in Russian], Yanus-K, Moscow (1996).Google Scholar
  11. 11.
    D. C. Erlich, D. C. Wooten, and R. C. Crewdson, “Dynamic tensile failure of glycerol,”J. Appl. Phys.,42, No. 13, 5495–5502 (1971).CrossRefADSGoogle Scholar
  12. 12.
    G. A. Carlson and K. W. Henry, “Technique for studying dynamic tensile in liquids: Application to glycerol,”J. Appl. Phys.,44, No. 5, P. 2201–2206 (1973).CrossRefADSGoogle Scholar
  13. 13.
    G. A. Carlson and H. S. Levine, “Dynamic tensile strength of glycerol,”J. Appl. Phys.,46, No. 4, 1594–1601 (1975).CrossRefADSGoogle Scholar
  14. 14.
    P. L. Marston and G. L. Pullen, “Cavitation in water induced by the reflection of shock waves,” in:Proc. of the Conf. of the Amer. Phys. Soc. on Shock Waves in Condensed Matter (Menlo Park, CA, 23–25 June, 1981), AIP, New York (1982), pp. 515–519.Google Scholar
  15. 15.
    P. L. Marston and B. T. Urgen, “Rapid cavitation induced by the reflection of shock waves,” in:Proc. of the Conf. of the Amer. Phys. Soc. on Shock Waves in Condensed Matter (Spokane, Washington, 22–25 July, 1985), Plenum Press, New York (1986), pp. 401–405.Google Scholar
  16. 16.
    A. N. Dremin, G. I. Kanel', and S. A. Koldunov, “Analysis of the spall in water, ethanol, and acrylic plastic,” in:Proc. III All-Union Symp. on Combustion and Explosion (Leningrad, July 5–10, 1971), Nauka, Moscow (1972), pp. 569–574.Google Scholar
  17. 17.
    G. A. Carlos, “Dynamic tensile strength of mercury,”J. Appl. Phys.,46, No. 9, 4069–4070 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Rybakov,Mechanics of Spall Fracture [in Russian], Izd. Perm. Vysh. Voen. Komandno-Inzh. Uch., Perm' (1990).Google Scholar
  19. 19.
    J. R. Asay, L. M. Barker, “Interferometric measurement of shock-induced internal particle velocity and spatial variations of particle velocity,”J. Appl. Phys.,45, No. 6, 2540–2546 (1974).CrossRefADSGoogle Scholar
  20. 20.
    A. V. Utkin, “The effect of the initial fracture rate on the formation of a spalling pulse,”Prikl. Mekh. Tekh. Fiz.,34, No. 4, 140–146 (1993).MATHMathSciNetGoogle Scholar
  21. 21.
    A. V. Utkin, “The effect of the fracture rate on the dynamics of a shock-loading pulse-body surface interaction”,Prikl. Mekh. Tekh. Fiz.,33, No. 6, 82–89 (1992).MathSciNetGoogle Scholar
  22. 22.
    M. P. Vukalovich,Tables of Thermodynamic Properties of Water and Steam [in Russian], Énergiya, Moscow-Leningrad (1965).Google Scholar
  23. 23.
    K. P. Stanyukovich (ed.),Physics of Explosion [in Russian], Nauka, Moscow (1975).Google Scholar
  24. 24.
    W. A. Walker and M. M. Sternberg, “The Chapman-Jouguet isentrope and the underwater shockwave erformance of pentolite,” in:Proc. of the 4th Int. Symp. on Detomation (White Oak. October 12–15, 1965). Office of Naval Res.-Dept. of the Navy, Washington (1967). pp. 23–29.Google Scholar
  25. 25.
    Yu. M. Kagan, “Kinetics of boiling of a pure liquid,”Zh. Fiz. Khim.,34, No. 1, 92–101 (1960).Google Scholar
  26. 26.
    A. V. Utkin, “Determination of the constants of spall-fracture kinetics of materials using experimental data,”Prikl. Mekh. Tekh. Fiz.,38, No. 6, 157–167 (1997).MATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. A. Bogach
  • A. V. Utkin

There are no affiliations available

Personalised recommendations