, Volume 47, Issue 3–4, pp 219–224 | Cite as

Capillary zone electrophoretic separation of basic proteins and drugs using guaran as a buffer modifier

  • Q. Liu
  • F. Lin
  • R. A. Hartwick
Short Communication


Guaran, a neutral polysaccharide, has been used as a buffer modifier to improve the separation of basic proteins and drugs. Migration reproductibility, peak shape and efficiency were improved when 0.1% guaran was added to the buffer. The concentration of guaran, ionic strength, and pH of buffer solution were optimized to obtain the optimum separation of proteins. Possible separation efficiencies of 700,000 plates per meter were obtained for test proteins. The relative standard deviation (% RSD) of the migration time of all test proteins was less than 0.5%. Improved separation of β-blockers was also observed when guaran was added to the buffer.

Key Words

Capillary electrophoresis Beta-blockers Protein separation Drug separation Guaran Buffer modifier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. W. Jorgenson, K. D. Lukacs, Anal. Chem.53, 1298 (1981).Google Scholar
  2. [2]
    J. W. Jorgenson, K. D. Lukacs, Science222, 266 (1983).Google Scholar
  3. [3]
    C. A. Monnig, R. T. Kennedy, Anal. Chem.66, 280R (1994).CrossRefGoogle Scholar
  4. [4]
    M. R. Schure, A. M. Lenhoff, Anal. Chem.65, 3024 (1993).CrossRefGoogle Scholar
  5. [5]
    S. Hjertén, J. Chromatogr.347, 191 (1985).CrossRefGoogle Scholar
  6. [6]
    J. W. Jorgenson, Trends Anal. Chem.3, 51 (1984).CrossRefGoogle Scholar
  7. [7]
    R. M. McCormick, Anal. Chem.60, 2322 (1988).CrossRefGoogle Scholar
  8. [8]
    G. J. M. Bruin, J. P. Chang, R. H. Kuhlman, K. Zegers, J. C. Kraak, H. Poppe, J. Chromatogr.471, 429 (1989).CrossRefGoogle Scholar
  9. [9]
    J. K. Towns, F. E. Regnier, J. Chromatogr.516, 69 (1990).CrossRefGoogle Scholar
  10. [10]
    K. A. Cobb, U. Dolnik, M. Novotny, Anal. Chem.62, 2478 (1990).CrossRefGoogle Scholar
  11. [11]
    J. K. Towns, E. E. Regnier, Anal. Chem.63, 1126 (1991).CrossRefGoogle Scholar
  12. [12]
    S. A. Swedberg, Anal. Biochem.185, 51 (1990).CrossRefGoogle Scholar
  13. [13]
    D. Bentrop, J. Kohr, H. Engelhardt, Chromatographia32, 171 (1991).CrossRefGoogle Scholar
  14. [14]
    W. Nashabeh, Z. El Rassi, J. Chromatogr.559, 367 (1991).CrossRefGoogle Scholar
  15. [15]
    J. Kohr, H. Engelhardt, J. Microcol. Sep.3, 491 (1991).CrossRefGoogle Scholar
  16. [16]
    J. T. Smith, Z. El Rassi, J. High Resolut. Chromatogr.15, 573 (1992).CrossRefGoogle Scholar
  17. [17]
    T. Wang, R. A. Hartwick, J. Chromatogr.594, 325 (1992).CrossRefGoogle Scholar
  18. [18]
    M. Huang, W. P. Uorkink, M. L. Lec, J. Microcol. Sep.4, 135 (1992).CrossRefGoogle Scholar
  19. [19]
    M. Huang, G. Yi, J. S. Bradshaw, M. L. Lee, J. Microcol. Sep.5, 199 (1993).CrossRefGoogle Scholar
  20. [20]
    Y. J. Yao, S. F. Y. Li, J. Chromatogr. A663, 97 (1994).CrossRefGoogle Scholar
  21. [21]
    G. J. M. Bruin, R. Huisden, J. C. Kraak, H. Poppe, J. Chromatogr.480, 339 (1989).CrossRefGoogle Scholar
  22. [22]
    M. Gilges, M. H. Kleemiss, G. Schomoburg, Anal. Chem.66, 2038 (1994).CrossRefGoogle Scholar
  23. [23]
    Q. Liu, F. Lin, R. A. Hartwick, J. Chromatogr. Sci.35, 126 (1997).Google Scholar
  24. [24]
    Q. Liu, F. Lin, R. A. Hartwick, J. Liq. Chrom. & Rel. Technol.20, 707 (1997).Google Scholar
  25. [25]
    H. H. Lauer, McMunigill, Anal. Chem.58, 166 (1986).CrossRefGoogle Scholar
  26. [26]
    Y. Walbroehl, J. W. Jorgenson, J. Microcol. Sep.1, 41 (1989).CrossRefGoogle Scholar
  27. [27]
    J. S. Green, J. W. Jorgenson, J. Chromatogr.478, 63 (1989).CrossRefGoogle Scholar
  28. [28]
    M. Bushey, J. W. Jorgenson, J. Chromatogr.480, 301 (1989).CrossRefGoogle Scholar
  29. [29]
    J. A. Bullock, L. Yuan, J. Microcol. Sep.3, 241 (1991).CrossRefGoogle Scholar
  30. [30]
    S. A. Swedberg, J. Chromatogr.503, 449 (1990).CrossRefGoogle Scholar
  31. [31]
    H. K. Kristensen, S. H. Hansen, J. Liq. Chromatogr.16, 2961 (1993).Google Scholar
  32. [32]
    S. Hjertén, Ark. Kemi13, 151 (1958).Google Scholar
  33. [33]
    M. Gilges, H. Husmann, M. H. Kleemiss, S. R. Motsch, G. Schomburg, J. High Resolut. Chromatogr.15, 452 (1992).CrossRefGoogle Scholar
  34. [34]
    D. Belder, G. Schomburg, J. High Resolut. Chromatogr.15, 686 (1992).CrossRefGoogle Scholar
  35. [35]
    H. Linder, W. Helliger, A. Dirschlmayer, M. Jaquemar, B. Puschendorf, Biochem. J.283, 467 (1992).Google Scholar
  36. [36]
    J. E. Wiktorowicz, J. C. Colburn, Electrophoresis,11, 769 (1990).CrossRefGoogle Scholar
  37. [37]
    C. Stathakis R. M. Cassidy, Anal. Chem.66, 2110 (1994).CrossRefGoogle Scholar
  38. [38]
    C. T. Wu, T. Lopes, B. Patel, C. S. Lee, Anal. Chem.64, 886 (1992).CrossRefGoogle Scholar
  39. [39]
    “The Merck Index” 10th edition, Merck & Co., Inc., Rahway, NJ 1983, pp.658–659.Google Scholar
  40. [40]
    R. Mathur, S. Bohra, C. K. Narang, N. K. Mathur, J. Liquid Chromatogr.15, 573 (1992).Google Scholar
  41. [41]
    S. Kumar, S. Chandra, N. Kanoongo, U. Mathur, N. K. Mathur, Reactive Polymers21, 141 (1993).CrossRefGoogle Scholar
  42. [42]
    E. Heyne, R. L. Whstler, J. Am. Cheni. Soc.70, 2249 (1948).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1998

Authors and Affiliations

  • Q. Liu
    • 1
  • F. Lin
    • 1
  • R. A. Hartwick
    • 2
  1. 1.P. M. Gross Chemical LaboratoryDuke UniversityDurhamUSA
  2. 2.PharmAssist Analytical Laboratory, Inc.South New BerlinUSA

Personalised recommendations