, Volume 47, Issue 3–4, pp 164–170 | Cite as

Study of the influence of electronic effects on the retention of substitutedN-benzylideneanilines in normal-phase liquid chromatography

  • S. Ounnar
  • M. Righezza
  • B. Delatousche
  • J. R. Chrétien
  • J. Toullec


A series of 72 substitutedN-benzylideneanilines (NBA) has been studied by normal-phase liquid chromatography by use of an experimental design based on variation of the composition of mobile phases prepared from heptane and three modifiers, tetrahydrofuran, 1-octanol and ethyl acetate, for each of which the specific interactions are different. Seven mobile phases were defined in the experimental design. The chromatographic data obtained are used to discuss the behavior of NBA by application of complementary chemometric methods—hierarchical ascending classification (HAC) and correspondence factor analysis (CFA). Although solute polarity has the greatest effect on retention, construction of HAC and CFA plots shows that solute behavior is also influenced by second-order electronic effects arising as a result of specific interactions between the solutes and the different modifier solvents. A quantitative structure-retention relationship has been established between Hammett's constants and the solutes projection on the first factorial axis of CFA.

Key Words

Column liquid chromatography N-Benzylideneanilines Hierarchical ascending classification Correspondence factor analysis Electronic effects Quantitative structure-retention relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Toullec, S. Bennour, J. Org. Chem.59, 2831 (1994).CrossRefGoogle Scholar
  2. [2]
    H. Kelker, R. Hatz, Handbook of Liquid Crystals, Verlag Chemie, Weinheim, 1980.Google Scholar
  3. [3]
    N. Russo, J. Mol. Struct. (Theochem)164, 403 (1988).CrossRefGoogle Scholar
  4. [4]
    H. Perrin, J. Bergès, J. Mol. Struct. (Theochem)76, 299 (1981).CrossRefGoogle Scholar
  5. [5]
    T. Bally, E. Hasselbach, S. Lanyiova, F. Marschner, M. Rossi, Helv. Chim. Acta,59, 486 (1976).CrossRefGoogle Scholar
  6. [6]
    J. Bergès, H. Perrin, J. Mol. Struct. (Theochem)76, 375 (1981).CrossRefGoogle Scholar
  7. [7]
    H. J. Hofmann, P. Birner, J. Mol. Struct.39, 145 (1977).CrossRefGoogle Scholar
  8. [8]
    H. J. Hofmann, F. Birnstock, J. Mol. Struct.44, 231 (1978).CrossRefGoogle Scholar
  9. [9]
    S. Ljunggren, G. Wettermark, Acta Chem. Scand.25, 1599 (1971).CrossRefGoogle Scholar
  10. [10]
    C. H. Warren, G. Wettermark, K. Weiss, J. Am. Chem. Soc.93, 4658 (1971).CrossRefGoogle Scholar
  11. [11]
    M. Traetteberg, I. Hilmo, R. J. Abraham, S. Ljunggren, J. Mol. Struct. (Theochem)48, 395 (1978).Google Scholar
  12. [12]
    H. B. Bürgi, J. D. Dunitz, Helv. Chim. Acta53, 1747 (1970).CrossRefGoogle Scholar
  13. [13]
    N. Ebara, Bull. Chem. Soc. Jpn33, 534 (1960).CrossRefGoogle Scholar
  14. [14]
    P. Brocklehurst, Tetrahedron18, 299 (1962).CrossRefGoogle Scholar
  15. [15]
    V. I. Minkin, Y. A. Zhdanov, E. A. Medyantzeva, Y. A. Ostroumov, Tetrahedron23, 3651 (1967).CrossRefGoogle Scholar
  16. [16]
    E. Hasselbach, E. Heilbronner, Helv. Chim. Acta51, 16 (1968).CrossRefGoogle Scholar
  17. [17]
    A. Houlden, I. G. Csizmadia, Tetrahedron25, 819 (1969).CrossRefGoogle Scholar
  18. [18]
    P. Skrabal, J. Steiger, H. Zollinger, Helv. Chim. Acta58, 800 (1975).CrossRefGoogle Scholar
  19. [19]
    D. Pitea, D. Grosso, Spectrochim. Acta Part A27, 739 (1971).CrossRefGoogle Scholar
  20. [20]
    R. N. Nurmukhametov, N. Vasilenko, Zh. Fiz. Khim. 3053 (1975).Google Scholar
  21. [21]
    V. M. S. Gil, M. E. L. Saraiva, Tetrahedron27, 1309 (1971).CrossRefGoogle Scholar
  22. [22]
    A. Echevarria, J. Miller, M. G. Nascimento, Magn. Reson. Chem.23, 809 (1985).CrossRefGoogle Scholar
  23. [23]
    R. Gawinecki, Z. Phys. Chem. (Leipzig)271, 863 (1990).Google Scholar
  24. [24]
    N. Inamoto, Tetrahedron Lett.41, 3617 (1974).CrossRefGoogle Scholar
  25. [25]
    M. Yoshida, H. Minato, M. Kobayashi, Chem. Lett.1097 (1976).Google Scholar
  26. [26]
    A. van Putten, J. W. Palvik, Tetrahedron27, 3007 (1971).CrossRefGoogle Scholar
  27. [27]
    H. Texier, Thesis, Doctorat d'Etat, Paris, 1975.Google Scholar
  28. [28]
    K. Tabei, E. Saitou, Bull. Chem. Soc. Jpn42, 1440 (1969).CrossRefGoogle Scholar
  29. [29]
    D. Pitea, D. Grosso, G. Favini, J. Mol. Struct,10, 101 (1974).CrossRefGoogle Scholar
  30. [30]
    Y. M. Issa, A. M. Hindamey, Y. A. Marghalani, R. M. Issa, Proc. Pakistan Acad. Sci.16, 19 (1979).Google Scholar
  31. [31]
    M. Nakamura, K. Komatsu, Y. Gondo, K. Ohta, Y. Ueda, Chem. Pharm. Bull.15, 585 (1967).Google Scholar
  32. [32]
    I. N. Juchnovski, V. Ognyanova, G. N. Andreev, Spectrosc. Lett.26, 447 (1993).Google Scholar
  33. [33]
    H. B. Bürgi, J. D. Dunitz, Helv. Chim. Acta54, 1255 (1971).CrossRefGoogle Scholar
  34. [34]
    J. Bernstein, G. M. J. Schmidt, J. Chem. Soc. Perkin Trans.2, 946 (1972).Google Scholar
  35. [35]
    M. Uehara, Nippon Kagaku Zasshi86, 901 (1965).Google Scholar
  36. [36]
    J. Oszczapowicz, J. Osek, K. Ciszkowski, W. Krawczyk, M. Ostrowski, J. Chromatogr.330, 79 (1985).CrossRefGoogle Scholar
  37. [37]
    H. Kelker, B. Scheurle, H. Winterscheidt, Anal. Chim. Acta38, 17 (1967).CrossRefGoogle Scholar
  38. [38]
    V. P. Sokolov, O. A. Osipov, V. A. Kogan, Zh. Obshch. Khim.38, 1614 (1968).Google Scholar
  39. [39]
    N. A. Klyuev, A. K. Sheinkman, E. A. Kuznetsova, R. A. Sinitsyna, E. N. Nelin, Ukr. Khim. Zh.45, 987 (1979).Google Scholar
  40. [40]
    B. C. Lynn, E. G. Alley, J. Chromatogr.408, 211 (1987).CrossRefGoogle Scholar
  41. [41]
    D. Goeckeritz, H. Brueckner, R. Pohloudek-Fabini, Pharmazie22, 154 (1967).Google Scholar
  42. [42]
    M. Rai, Baljit, Renu, B. S. Dhir, P.S. Kalsi, J. Indian Chem. Soc.61, 272 (1984).Google Scholar
  43. [43]
    A. K. Bose, K. Tabei, V. S. Raju, Tetrahedron Lett.,31, 1661 (1990).CrossRefGoogle Scholar
  44. [44]
    W. C. Larkins, Jr, S. V. Olesik, J. Microcolumn Sep.5, 543 (1993).CrossRefGoogle Scholar
  45. [45]
    M. J. Kamlet, J. L. M. Abbound, M. H. Abraham, R. W. Taft, J. Org. Chem.,48, 2877 (1983).CrossRefGoogle Scholar
  46. [46]
    J. H. Park, P. W. Carr, J. Chromatogr.465, 123 (1989).CrossRefGoogle Scholar
  47. [47]
    L. R. Snyder, P. W. Carr, S. C. Rutan, J. Chromatogr. A656, 537 (1993).CrossRefGoogle Scholar
  48. [48]
    D. L. Massart, H. L. O. De Clercq, Adv. Chromatogr.16, 75 (1978).Google Scholar
  49. [49]
    J. R. Chrétien, B. Walczak, L. Morin-Allory, M. Dreux, M. Lafosse, J. Chromatogr,371, 253 (1986).CrossRefGoogle Scholar
  50. [50]
    M. Righezza, J. R. Chrétien, J. Chromatogr.544, 393 (1991).CrossRefGoogle Scholar
  51. [51]
    J. P. Benzécri, L'analyze des données, Dunod editor, Paris, 1973.Google Scholar
  52. [52]
    M. J. Greenacre, Theory and Application of Correspondence Analysis, Academic Press, London, 1984.Google Scholar
  53. [53]
    M. Mellinger, Chemometrics and Intelligent Laboratory Systems2, 61 (1987).CrossRefGoogle Scholar
  54. [54]
    E. R. Malinowski, D. G. Howery, Factor Analysis in Chemistry, J. Wiley, New York, 1980.Google Scholar
  55. [55]
    J. Joliffe, Principal Component Analysis, Springer, Berlin, 1986.Google Scholar
  56. [56]
    S. Wold, K. Esbensen, P. Geladi, Chemometrics and Intelligent Laboratory Systems,2, 37 (1987).CrossRefGoogle Scholar
  57. [57]
    M. Righezza, J. R. Chrétien, J. Chromatogr.556, 169 (1991).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1998

Authors and Affiliations

  • S. Ounnar
    • 1
  • M. Righezza
    • 1
  • B. Delatousche
    • 2
  • J. R. Chrétien
    • 2
  • J. Toullec
    • 3
  1. 1.Institut de Chimie Organique et Analytique (ICOA)Université d'OrléansOrléans Cedex 2France
  2. 2.Laboratoire de ChimiométrieUniversité d'OrléansOrléans Cedex 2France
  3. 3.Synthèse Interactions et Réactivité en Chimie Organique et Bio-organique, CNRSUniversité de VersaillesVersailles CedexFrance

Personalised recommendations