Chromatographia

, Volume 47, Issue 3–4, pp 125–134 | Cite as

Rapid and reproducible capillary electrophoretic separation of double-stranded DNA fragments in a simple methyl cellulosic sieving system

  • L. Roed
  • I. Arsky
  • E. Lundanes
  • T. Greibrokk
Originals

Summary

A rapid, robust and reproducible method providing excellent separation performance and simplicity using a 0.5% MC-4000 methyl cellulosic sieving medium in DB-1 coated capillaries has been developed. The method is suitable for qualitative comparison of DNA restriction profiles for fragments in the size range 100–1000 base pairs (bp). Efficiencies up to 8.5 million plates/m (1057 bp fragment) were recorded. Peak resolution of 6 bp (291/297 bp, 335/341 bp) and 4 bp (238/242 bp, 341/345 bp) was achieved. In addition, 1 bp partial resolution of 123/124 bp and 298/297 bp was obtained. Run-to-run (n=15), day-to-day (n=4), and capillary-to-capillary (n=3) variations of 0.1–0.2% RSD, 0.3–0.5% RSD, and 0.1–0.3% RSD, respectively, were observed. The MC-4000 sieving matrix was found to be better than hydroxypropyl methyl cellulose and hydroxypropyl cellulose, in terms of both performance and stability in the DB-1 coated capillaries. The efficiency and resolution in DB-WAX capillaries were inferior to those obtained in DB-1 capillaries. The commercially available DB-1 capillaries were stable for months in the sieving medium at pH 8.3 and could be regenerated to provide high efficiency after accidental current breaks.

Key Words

Capillary electrophoresis DNA fragments Cellulose derivatives Sieving cellulose matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Srinivasan, J. E. Girard, P. Williams, R. K. Roby, V. W. Weedn, S. C. Morris, M. C. Kline, D. J. Reeder, J. Chromatogr. A652, 83 (1993).CrossRefGoogle Scholar
  2. [2]
    T. Izumi, M. Yamaguchi, K. Yoneda, T. Isobe, T. Okuyama, T. Shinoda, J. Chromatogr. A652, 41 (1993).CrossRefGoogle Scholar
  3. [3]
    V. Dolník, M. Novotny, J. Microcol. Sep.4, 515 (1992).CrossRefGoogle Scholar
  4. [4]
    P. Bocek, A. Chrambach, Electrophoresis13, 31 (1992).CrossRefGoogle Scholar
  5. [5]
    N. Zhang, E. S. Yeung, Anal. Chem.68, 2927 (1996).CrossRefGoogle Scholar
  6. [6]
    E. Simò-Alfonso, C. Gelfi, M. Lucisano, P. G. Righetti, J. Chromatogr. A756, 255 (1996)CrossRefGoogle Scholar
  7. [7]
    C. Gelfi, A. Orsi, F. Leoncini, P. G. Righetti, I. Spiga, P. Carrera, M. Ferrari, Bio Techniques19, 254 (1995).Google Scholar
  8. [8]
    A. E. Barron, H. W. Blanch, Sep. Purif. Methods24, 1 (1995).Google Scholar
  9. [9]
    H. Arakawa, K. Uetanaka, M. Maeda, A. Tsuji, J. Chromatogr. A664, 89 (1994).CrossRefGoogle Scholar
  10. [10]
    C. Sumita, Y. Baba, K. Hide, N. Ishimaru, K. Samata, A. Tanaka, M. Tsuhako, J. Chromatogr. A661, 297 (1994).CrossRefGoogle Scholar
  11. [11]
    C. Gelfi, A. Orsi, F. Leoncini, P. G. Righetti, J. Chromatogr. A689, 97 (1995).CrossRefGoogle Scholar
  12. [12]
    Y. F. Pariat, J. Berka, D. N. Heiger, T. Schmitt, M. Vilenchik, A. S. Cohen, F. Foret, B. L. Karger, J. Chromatogr. A652, 57 (1993).CrossRefGoogle Scholar
  13. [13]
    D. Figeys, E. Arriaga, A. Renborg, D. J. Dovichi, J. Chromatogr. A669, 205 (1994).CrossRefGoogle Scholar
  14. [14]
    D. Heller, J. L. Viovy, Appl. Theor. Electrophor.4, 39 (1994).Google Scholar
  15. [15]
    Y. Baba, C. Sumita, K. Hide, N. Ishimaru, K. Samata, A. Tanaka, M. Tsuhako, J. Liq. Chromatogr.16, 955 (1993).Google Scholar
  16. [16]
    B. R. McCord, J. M. Jung, E. A. Hollerah, J. Liq. Chromatogr.16, 1963 (1993).Google Scholar
  17. [17]
    M. Strege, A. Lagu, Anal. Chem.63, 1233 (1991).CrossRefGoogle Scholar
  18. [18]
    S. Hjertén, J. Chromatogr.347, 191 (1985).CrossRefGoogle Scholar
  19. [19]
    C. Gelfi, P. G. Righetti, F. Leoncini, V. Brunelli, P. Carrera, M. Ferrari, J. Chromatogr. A706, 463 (1995).CrossRefGoogle Scholar
  20. [20]
    B. K. Clark, C. L. Nickles, K. C. Morton, J. Kovac, M. J. Sepaniak, J. Microcol. Sep.6, 503 (1994).CrossRefGoogle Scholar
  21. [21]
    W. A. MacCrehan, H. T. Rasmussen, D. M. Northrop, J. Liq. Chromatogr.15, 1963 (1992).Google Scholar
  22. [22]
    K. A. Cobb, V. Dolník, M. Novotny, Anal. Chem.62, 2478 (1990).CrossRefGoogle Scholar
  23. [23]
    K. Peck, S.-L. Wung, G.-S. Chang, J. J. Y. Yen, Y.-Z. Hsieh, Anal. Chem.69, 1380 (1997).CrossRefGoogle Scholar
  24. [24]
    P. E. Williams, Methods4, 227 (1992).CrossRefGoogle Scholar
  25. [25]
    J. Skeidsvoll, P. M. Ueland, Anal. Biochem.231, 359 (1995).CrossRefGoogle Scholar
  26. [26]
    E. K. Just, T. G. Majewicz, in H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges and J.I. Kroschwitz (Eds.), Encyclopedia of polymer science and engineering, John Wiley & Sons, New York, 1985, vol. 3, p. 226.Google Scholar
  27. [27]
    J. C. Miller, J. N. Miller, Statistics for analytical chemistry, Ellis Horwood, Chichester, West Sussex, 3. edition, 1993.Google Scholar
  28. [28]
    Y. Baba, N. Ishimaru, K. Samata, M. Tsuhako, J. Chromatogr. A653, 329 (1993).CrossRefGoogle Scholar
  29. [29]
    K. C. Chan, C.-W. Whang, E. S. Yeung, J. Liq. Chromatogr.16, 1941 (1993).Google Scholar
  30. [30]
    E. Katsivela, M. G. Höfle, J. Chromatogr. A717, 91 (1995).CrossRefGoogle Scholar
  31. [31]
    P. E. Williams, M. A. Marion, S. A. Del Rio, L. A. Turni, J. M. Devaney, J. Chromatogr. A680, 525 (1994).CrossRefGoogle Scholar
  32. [32]
    F. Martin, D. Vairelles, B. Henrion, Anal. Biochem.214, 182 (1993).CrossRefGoogle Scholar
  33. [33]
    K. Srinivasan, S. C. Morris, J. E. Girard, M. C. Kline, D. J. Reeder, Appl. Theor. Electrophor.3, 235 (1993).Google Scholar
  34. [34]
    D. N. Heiger, A. S. Cohen, B. L. Karger, J. Chromatogr.516, 33 (1990).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1998

Authors and Affiliations

  • L. Roed
    • 1
  • I. Arsky
    • 1
  • E. Lundanes
    • 1
  • T. Greibrokk
    • 1
  1. 1.Department of ChemistryUniversity of OsloBlindernOsloNorway

Personalised recommendations