Chromatographia

, Volume 44, Issue 3–4, pp 205–208 | Cite as

Determination of drug-protein interactions by combined microdialysis and high-performance liquid chromatography

  • H. L. Wang
  • H. F. Zou
  • Y. K. Zhang
Short Communication

Summary

A simple and rapid method for determination of the parameters of the interaction between drugs and protein, including the association constant and the number of binding sites, has been developed by use of a microdialysis sampling technique combined with high-performance liquid chromatography. The drug and protein (carbamazepine (5H-dibenz[b,f]flazepine-5-carboxamide, CBZ) and human serum albumin (HSA) were used as examples) were mixed in different molar ratios in 0.067 M potassium phosphate buffer, pH 7.4, and incubated at 37°C in a water-bath. The microdialysis probe was the used to sample the mixed CBZ-HSA solution at a perfusion rate of 1 μL min−1. The concentration of CBZ in the microdialysate was determined by reversed-phase high-performance liquid chromatography. Relative recovery (R), determined in vitro under similar conditions, was approximately 42.7%; theRSD ofR was approximately 1.85%. The estimated association constant (K) and the number of the binding sites,n, on one molecule of HSA were 1.06×104 M−1 and 0.880, respectively, which is in good agreement with the literature values determined by high-performance frontal analysis. The potential use of microdialysis is also discussed.

Key Words

Column liquid chromatography Microdialysis Carbamazepine Human serum albumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Kraak, S. Busch, H. Poppe, J. Chromatogr.608, 257 (1992).CrossRefGoogle Scholar
  2. [2]
    S. F. Sun, C. L. Hsiao, Chromatographia37, 329 (1993).CrossRefGoogle Scholar
  3. [3]
    H. Russo, M. Audran, F. Bressolle, J. Bres, H. Maillols, J. Pharm. Sci.82, 493 (1993).Google Scholar
  4. [4]
    G. R. Tonn, C. R. Kerr, J. E. Axelson, J. Pharm. Sci.,81, 1098 (1992).Google Scholar
  5. [5]
    I. M. Koltz, J. Am. Chem. Soc.68, 2299 (1946).CrossRefGoogle Scholar
  6. [6]
    W. F. Bowers, S. Fulton, J. Thompson, Clin Pharmacokinet.9, 49 (1984).CrossRefGoogle Scholar
  7. [7]
    C. E. Lunte, D. O. Scott, P. T. Kissinger, Anal. Chem.63, 773A (1991).Google Scholar
  8. [8]
    D. O. Scoff, L. R. Sorensen, C. E. Lunte, J. Chromatogr.606, 461 (1990).Google Scholar
  9. [9]
    U. Tossman, U. Ungerstedt, Neurosci. Lett. Suppl.7, S479 (1981).Google Scholar
  10. [10]
    B. H. C. Westerink, M. J. H. Tuinte, J. Neurochem.46, 181 (1986).Google Scholar
  11. [11]
    B. L. Hogan, S. M. Lunte, J. F. Stobaugh andC. E. Lunte, Anal. Chem.66, 596 (1994).CrossRefGoogle Scholar
  12. [12]
    S. A. Wages, W. H. Church, J. B. Justicer Jr, Anal. Chem.58, 1649 (1986).CrossRefGoogle Scholar
  13. [13]
    A. M. Herrara, D. O. Scott, C. E. Lunte, Pharm. Res.7, 1077 (1990).CrossRefGoogle Scholar
  14. [14]
    M. Ekblom, M. Hammarlund-Udenase, T. Lundqvist, P. Sjoberg, Pharm. Res.9, 155 (1992).CrossRefGoogle Scholar
  15. [15]
    Hailin Wang, Hanfa Zou, Aisheng Feng, Yukui Zhang, Chin. J. Anal. Chem., accepted for publication.Google Scholar
  16. [16]
    A. Terakita, A. Shibukawa, C. Nakao, T. Nakagawa, Anal. Sci.10, 11 (1994).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • H. L. Wang
    • 1
  • H. F. Zou
    • 1
  • Y. K. Zhang
    • 1
  1. 1.National Chromatographic R. & A. Centre, Dalian Institute of Chemical PhysicsAcademia SinicaDalianP. R. China

Personalised recommendations