Advertisement

Chromatographia

, Volume 44, Issue 3–4, pp 135–144 | Cite as

Influence of temperature and mobile phase composition on retention properties of oligomeric bonded phases in reversed-phase liquid chromatography (RPLC)

  • S. O. Akapo
  • C. F. Simpson
Originals

Summary

The effect of temperature and mobile phase composition (methanol-water) on the retention behaviour of an oligomeric series of n-octylsilyl bonded phases in reversed-phase liquid chromatography has been investigated. Plots of lnk against 1/T (van't Hoff plot) and the enthalpy of transfer (ΔHo) yields linear relationships under the conditions studied. The ΔHo values of the aromatic hydrocarbons and n-alkyl benzoates are higher than those of the polar compounds due to their higher level of interaction with the stationary phase. A linear plot of ΔHo vs. ΔSo suggest that the retention process, which is essentially controlled by non-specific (dispersive) interactions between the solutes and the bonded ligands, is identical for all cases evaluated. The existence of similar retention mechanisms is confirmed by the constant value of the enthalpy-entropy compensation temperature of the columns for a given class of componds. As expected, decreasing the methanol content (% v/v) of the mobile phase results in increased eluite retention times. The methylene and phenyl selectivities are found to be independent of the carbon content of the stationary phases and varied only with the eluent composition. In addition to their high stability under aggressive mobile phase conditions as previously reported, the results of this study generally showed that the solute retention process on oligomeric phases are similar to those exhibited by the conventional reversed phases.

Key Words

Column liquid chromatography Oligomeric stationary phases Enthalpy-entropy compensation Methylene and phenyl selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. L. Karger, J. R. Gant, A. Hartkopf, P. H. Weiner, J. Chromatogr.128, 65 (1976).CrossRefGoogle Scholar
  2. [2]
    H. Colin, J. C. Diez-Mesa, G. Guiochon, T. Czajkowska, I. Miedziak, J. Chromatogr.167, 41 (1978).CrossRefGoogle Scholar
  3. [3]
    W. R. Melander, B. Chen, Cs. Horvath, J. Chromatogr.185, 99 (1979).CrossRefGoogle Scholar
  4. [4]
    Gy. Vigh, Z. Varga-Puchony, J. Chromatogr.196, 1 (1980).CrossRefGoogle Scholar
  5. [5]
    L. C. Sander, L. R. Filed, Anal. Chem.52, 2009 (1980).CrossRefGoogle Scholar
  6. [6]
    E. Grushka, H. Colin, G. Guiochon, J. Chromatogr.248, 325 (1982).CrossRefGoogle Scholar
  7. [7]
    W. R. Melander, C. A. Mannan, Cs. Horvath, Chromatographia15, 611 (1982).CrossRefGoogle Scholar
  8. [8]
    W. R. Melander, B.-K. Chen, Cs. Horvath, J. Chromatogr.318, 1 (1985).CrossRefGoogle Scholar
  9. [9]
    A. Tchapla, S. Heron, H. Colin, G. Guiochon, Anal. Chem.60, 1443 (1988).CrossRefGoogle Scholar
  10. [10]
    L. A. Cole, J. G. Dorsey, Anal. Chem.64, 1317 (1992).CrossRefGoogle Scholar
  11. [11]
    L. A. Cole, J. G. Dorsey, K. A. Oill, Anal. Chem.64, 1324 (1992).CrossRefGoogle Scholar
  12. [12]
    C. H. Löchmuller, M. A. Moebus, Q. Liu, C. Jiang, M. Elomaa, J. Chromatogr. Sci.34, 69 (1996).Google Scholar
  13. [13]
    E. J. Kikta, E. Grushka, Anal. Chem.48, 1098 (1976).CrossRefGoogle Scholar
  14. [14]
    D. Morel, J. Serpinet, J. Chromatogr.248, 231 (1982).CrossRefGoogle Scholar
  15. [15]
    F. M. Yamamoto, S. Rokushika, H. Hatano, J. Chromatogr. Sci.27, 704 (1989).Google Scholar
  16. [16]
    J. H. Issaq, S. D. Fox, K. Lindsey, J. H. McConnell, D. E. Weiss, J. Liq. Chromatogr.10, 49 (1987).Google Scholar
  17. [17]
    J. H. Knox, G. Vasvari, J. Chromatogr.83, 181 (1973).CrossRefGoogle Scholar
  18. [18]
    W. R. Melander, D. E. Cambell, Cs. Horvath, J. Chromatogr.158, 215 (1978).Google Scholar
  19. [19]
    S. O. Akapo, A. Furst, T. M. Khong, C. F. Simpson, J. Chromatogr.471, 283 (1989).CrossRefGoogle Scholar
  20. [20]
    S. O. Akapo, R. P. W. Scott, C. F. Simpson, J. Liq. Chromatogr.14, 217 (1991).Google Scholar
  21. [21]
    S. O. Akapo, C. F. Simpson, J. Chromatogr.557, 515 (1991).CrossRefGoogle Scholar
  22. [22]
    Cs. Horvath, W. Melander, I. Molnar, J. Chromatogr.125, 129 (1976).CrossRefGoogle Scholar
  23. [23]
    R. P. W. Scott, C. F. Simpson, J. Chromatogr.197, 11 (1980).CrossRefGoogle Scholar
  24. [24]
    R. P. W. Scott, “Silica Gel and Boned Phases—Their Production, Properties and Use in LC”, John Wile & Sons, New York, 1993.Google Scholar
  25. [25]
    H. M. J. Boots, P. K. de Bokx, J. Phys. Chem.93, 8240 (1989).CrossRefGoogle Scholar
  26. [26]
    K. Sentell, J. Dorsey, J. Chromatogr.461, 193 (1989).CrossRefGoogle Scholar
  27. [27]
    H. Colin, G. Guiochon, Z. Yun, J. C. Diez-Masa, J. Jandera, J. Chromatogr. Sci.21, 179 (1983).Google Scholar
  28. [28]
    C. H. Löchmuller, M. L. Hunnicut, J. F. Mullaney, J. Phy. Chem.89, 5770 (1985).CrossRefGoogle Scholar
  29. [29]
    A. M. Krstulovic, H. Colin, A. Tchapla, G. Guiochon, Chromatographia17, 228 (1983).CrossRefGoogle Scholar
  30. [30]
    D. E. Martire, R. E. Boehm, J. Phys. Chem.87, 1045 (1983).CrossRefGoogle Scholar
  31. [31]
    G. Buamah, M. Sc. Thesis 1996, Birkbeck College, University of London.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • S. O. Akapo
    • 1
  • C. F. Simpson
    • 1
  1. 1.Analytical Science Group, Chemistry Department, Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations