Skip to main content
Log in

Effect of the pressure in the gas-discharge chamber on the depth of nitrogen diffusion in titanium alloys

  • 130th Anniversary of the Faculty of Machine-building Technologies of N. É. Bauman Moscow State Engineering University
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Among all the kinds of surface hardening of titanium alloys ion nitriding in a hydrogen-free medium is the most efficient and environmentally safe. The time of nitrogen saturation of titanium alloys by this method is 10–15 times shorter than in conventional nitriding. The acceleration of the diffusion of nitrogen under conditions of a glow discharge makes it possible to conduct the nitriding of (α+β)-titanium alloys at low temperatures that correspond to those of their aging, which had been impossible earlier. Diffusion saturation in ion surface impregnation is a multifactor process, which makes it controllable. One of the main controlling factors of ion nitriding is the pressure of the working gas. A study of the effect of the pressure in the gas-discharge chamber on the depth of nitrogen diffusion in titanium alloys (under conditions of stable existence of the glow discharge) made it possible to determine the dependence of the thickness of the layer and the specific power of the discharge on the nitrogen pressure and to determine the interrelation between the specific power and the saturating capacity of the gas medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Panaioti and G. V. Solov'ev, “Ion nitriding of α- and (α+β)-titanium alloys”,Vestnik MGTU, Ser. Mashinostr., No. 1, 15–24 (1994).

    Google Scholar 

  2. T. A. Panaioti and G. V. Solov'ev, “Special features of the formation of diffusion layers in ion nitriding of α- and (α+β)-titanium alloys in the 500–1000°C temperature range”,Metalloved. Term. Obrab. Met., No. 5, 34–37 (1994).

    Google Scholar 

  3. N. I. Martovitskaya, “Determination of the thickness of the nitride layer in nitrided steels”,Metalloved. Term. Obrab. Met., No. 2, 31–36 (1983).

    Google Scholar 

  4. Yu. M. Lakhtin, Ya. D. Kogan, and V. N. Shaposhnikov, “Optimization of gas-dynamic and energy parameters of ion nitriding”,Metalloved. Term. Obrab. Met., No. 6, 2–6 (1976).

    Google Scholar 

  5. Yu. M. Lakhtin, Ya. D. Kogan, and V. N. Shaposhnikov, “A study of the process of nitriding steel in a glow discharge”,Elektr. Obrab. Mater., No. 5, 15–18 (1976).

    Google Scholar 

  6. A. D. Scott and A. B. Belotski, “Influencia de la presion en la profundidat de la capa nitrurada por bombardero ionico en el sistem Fe−Mn−Ti”,Construccion de Maguinaria,7 (1), 31–36 (1982).

    Google Scholar 

  7. D. A. Prokoshkin, T. A. Panaioti, A. P. Sokolov, and S. V. Moskvich, “Effect of the process factors of ion nitriding on the properties of maraging steels”,Izv. Vuzov. Mashinostr., No. 3, 116–119 (1984).

    Google Scholar 

  8. D. A. Prokoshkin, T. A. Panaioti, and G. V. Solov'ev, “A study of ion nitriding of titanium”,Izv. Vuzov. Mashinostr., No. 5, 107–110 (1985).

    Google Scholar 

  9. T. A. Panaioti,Nitriding of High-Strength Steels and Alloys in a Glow Discharge [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  10. K. Keller, “Schichtaufbau glimmnitrierten Eisen werkstoffe”,Harterei Fechunische Mitteilung,26 (2), 120–128 (1971).

    CAS  Google Scholar 

  11. B. Edenhofer, “Progress in the control of plasmanitriding and carburizing for better layer consistency and reproducibility”,Plasma Surf. Eng.,1, 257–268 (1989).

    CAS  Google Scholar 

  12. B. Edenhofer, “Fortshritte in der Prozebregegelung beim Plasmanitrieren”,Hartren-Technische Mitteilung,44(6), 339–345 (1989).

    CAS  Google Scholar 

  13. B. Edenhofer, “Moglichkeiten und Grensen der Plasmaaufkohlung”,Harefei-Technische Mitteilungen,45 (3), 154–162 (1990).

    CAS  Google Scholar 

  14. B. N. Arzamasov,Chemical Heat Treatment in Activated Gas Media [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  15. I. A. Mikhailov, “Ion proportions in discharge nitriding”,Metalloved. Term. Obrab. Met., No. 10, 50–51 (1965).

    Google Scholar 

  16. B. N. Arzamasov and I. A. Mikhailov, “A study of some processes of ion nitriding”, in:Peredovoi Nauch.-Tekh. i Proizv. Opyt. No. 18-67-1319/113 [in Russian], GOSINTI, Moscow (1967).

    Google Scholar 

  17. I. A. Mikhailov, “A study of channel rays in the glow discharge in nitriding”, in:Protective Coatings on Metals, Issue 1 [in Russian], Naukova Dumka, Kiev (1967), pp. 81–86.

    Google Scholar 

Download references

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 32–35, September, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panaioti, T.A. Effect of the pressure in the gas-discharge chamber on the depth of nitrogen diffusion in titanium alloys. Met Sci Heat Treat 40, 381–384 (1998). https://doi.org/10.1007/BF02466245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02466245

Keywords

Navigation