Journal für Ornithologie

, Volume 144, Issue 2, pp 176–185 | Cite as

A mtDNA phylogeny of bustards (family Otididae) based on nucleotide sequences of the cytochromeb-gene

  • Olaf Broders
  • Tim Osborne
  • Michael Wink


Phylogenetic relationships of the bustard generaOtis, Ardeotis, Afrotis, Chlamydotis, Eupodotis, Lophotis, andTetrax were inferred from nucleotide sequences of the mitochondrial cytochromeb gene (1143 bp).Otis/Chlamydotis, Ardeotis/Eupodotis meppellii, andLophotis/Tetrax cluster as sibling taxa both in MP and ML reconstructions. The genusEupodotis appears to be polyphyletic. In the genusChlamydotis two distinct groups are apparent,C. u. undulata/C. u. fuertaventurae andC. u. macqueenii. In the case of Cm.macqueenii birds from Sinai show a distinct haplotype. Because of substantial genetic, morphological and behavioural differences, it is suggested attributing species rank toC. undulata undC. macqueenii.


Otididae mtDNA cytochromeb phylogenetic analysis 

Rekonstruktion der Trappenphylogenie (Familie Otididae) anhand von Nucleotidsequenzen des mitochondrialen Cytochrom-b Gens


Phylogenetische Beziehungen zwischen den TrappengeneraOtis, Ardeotis, Afrotis, Chlamydotis, Eupodotis, Lophotis, undTetrax wurden anhand von Nucleotidsequenzen des mitochondrialen Cytochrom b Gens (1143 Basenpaare) ermittelt. In Maximum Parsimony und Maximum Likelihood Rekonstruktionen clustemOtis/Chlamydotis, Ardeotis/ Eupodotis meppellii, undLophotis/Tetrax als Schwestertaxa. Die GattungEupodotis bildet offenbar eine polyphyletische Gruppe. Innerhalb der GattungChlamydotis lassen sich zwei distinkte Entwicklungslinien erkennen,C. u. undulata/C. u. fuertaventurae undC. u. macqueenii. Innerhalb von Cm.macqueenii weisen die Trappen des Sinai-Gebietes einen eigenen Haplotyp auf. Da sich die beiden Entwicklungslinien durch klare genetische, morphologische und ethologische Merkmale unterscheiden, ware es sinnvoll,C. undulata undC. macqueenii als distinkte Arten zu behandeln.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J. C. (1994): Molecular markers, natural history and evolution. LondonGoogle Scholar
  2. Avise, J. C. & Zink, R. M. (1988): Molecular genetic divergence between avian sibling species: King and Clapper Rails, Long-billed and short-billed Dowitchers, Boat-tailed and Great-tailed Crackles, and Tufted and Black-crested Titmice. Auk 105: 516–528.Google Scholar
  3. Brown, W. M., George, M. jr. & Wilson, A. C. (1979): Rapid evolution of animal mitochondrial DNA. Proc. Nat. Acad. Sci. U.S.A. 76: 1967–1971.CrossRefGoogle Scholar
  4. Brown, W.M., Prager, E.M., Wang, A. & Wilson, A. C. (1982): Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol. 18:225–239.PubMedCrossRefGoogle Scholar
  5. Clancey, P. A. (1966): The avian superspecies of the South African fauna. Ostrich Suppl. 6.13–39.Google Scholar
  6. Del Hoyo, J., Elliott, A., & Sargatal, J. (1996): Handbook of the birds of the world. Vol. 3. Barcelona.Google Scholar
  7. Desjardins, P & Morais, R (1990): Sequence and gene organisation of chicken mitochondrial genome. J. Mol. Biol. 212.599–634.PubMedCrossRefGoogle Scholar
  8. Feduccia, A. (1995): Explosive evolution in tertiary birds and mammals. Science 267: 637–638.Google Scholar
  9. Gaucher, P., Paillat, P., Chappuis, C, Saint Jaime, M., Lotfikah, F. & Wink, M. (1996): Taxonomy of the Houbara BustardChlamydotis undulata subspecies considered on the basis of sexual display and genetic divergence. Ibis 138: 273–283.Google Scholar
  10. Granjon, L., Gaucher, P., Greth, A., Paillat, P. & Vassart, M. (1994): Allozyme study of two subspecies of Houbara bustard. Biochem. Sy st. Ecol. 22: 775–779.Google Scholar
  11. Hedges, S. B., Parker, H. P., Sibley, C. G. & Kumar, S. (1996): Continental breakup and the ordinal diversification of birds and mammals. Nature 381: 226–229.PubMedCrossRefGoogle Scholar
  12. Hinz, C. & Heiss, E. M. (1989): The activity pattern of Houbara Bustards: Aspects of a field study in the Canary Islands. Bustard Studies 4: 68–79.Google Scholar
  13. Houde, P., Cooper, A., Leslie, E., Strand, A.E. Montano, G. A. (1997): Phylogeny of 12S rDNA in Gruiformes (Aves). In: Mindell, D.P. (Eds.): Avian molecular evolution and systematics. San Diego.Google Scholar
  14. Huelsenbeck, J. P. & Crandall, K. A. (1997): Phylogeny estimation and hypothesis using Maximum Likelihood. Ann. Rev. Ecol. Syst. 28:437–466.CrossRefGoogle Scholar
  15. Mindell, D.P. (1997): Avian molecular evolution and systematics. San Diego.Google Scholar
  16. Mourer-Chauviré, C. (1982): Les oiseaux fossiles des Phosphorites du Quercy (éocenè supérieur à oligocène supérieur): implications paléobiogéographiques. Géobios Mémoires Spéciales 6: 413–426.Google Scholar
  17. Olson, S.L. (1985): The fossil records of birds. In: Farner, D. S., King, J. R. & Parkes, K. (Eds.): Avian Biology, vol. 8: 79–238. Orlando.Google Scholar
  18. Pitra, C, Lieckfeldt, D. & Alonso, J. C. (2000): Population subdivision in Europe’s great bustard inferred from mitochondrial and nuclear DNA sequence variation. Mol. Ecology 9: 1165–1170.CrossRefGoogle Scholar
  19. Pitra, C, Lieckfeldt, D., Frahnert, S. & Fickel, J. (2002): Phylogenetic relationships and ancestral areas of the bustards (Gruiformes: Otitidae), inferred from mitochondrial DNA and nuclear intron sequences. Mol. Phylogenet. Evol. 23: 63–74.PubMedCrossRefGoogle Scholar
  20. Sanchez Marco, A. (1989–90): A new bustard (Otididae; Aves) from the early Pliocene of Layna (Soria, Spain). Paleontologia I Evolucio 23: 223–229.Google Scholar
  21. Shields, G.F. & Helm-Bychowsky, K.M. (1988): Mitochondrial DNA in birds. In: Johnston, R. F. (Ed.): Current Ornithology, vol. 5: 273–295. New York.Google Scholar
  22. Shields, G. F. & Wilson, A. C. (1987): Calibration of mitochondrial evolution in geese. J. Mol. Evol. 24:212–217.PubMedCrossRefGoogle Scholar
  23. Sibley, C.G. & Monroe, B.L. (1990): Distribution and taxonomy of birds of the world. New Haven.Google Scholar
  24. Sibley, G.C. & Ahlquist, J.E. (1990): Phylogeny and classification of birds. A study in molecular evolution. New Haven.Google Scholar
  25. Swofford, D.L. (2002): PAUP-Phylogenetic analysis using parsimony. Version PAUP*4.0bl0.Google Scholar
  26. Swofford, D. L., Olsen, J. G., Waddell, P. J. & Hillis, D. M. (1996): Phylogenetic interference. In: Hillis D. M., Moritz C & Mable B. K. Molecular Systematics. Second edition: 407–514. SunderlandGoogle Scholar
  27. Tarr, C.L. & Fleischer, R.C. (1993): Mitochondrial DNA variation and evolutionary relationships in the amakihi complex. Auk 110: 825–831.Google Scholar
  28. van Tuinen, M., Sibley, G.C. & Hedges, S.B. (1998): Phylogeny and biogeography of ratite birds inferred from DNA sequences of mitochondrial ribosomal genes. Mol. Bio. Evol. 15: 370–376.Google Scholar
  29. Wilson, A.C., Ochman, H. & Prager, E.M. (1987): Molecular time scale for evolution. Trends Genetics 3: 241–247.CrossRefGoogle Scholar
  30. Wink, M. (1998): Application of DNA-Markers to Study the Ecology and Evolution of Raptors. In: Chancellor, R. D., Meyburg, B.-U., Ferrero, J. J. (Eds.): Holarctic Birds of Prey., Adenex WWGBP: 49–71.Google Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft/Blackwell Verlag 2003

Authors and Affiliations

  • Olaf Broders
    • 1
  • Tim Osborne
    • 2
  • Michael Wink
    • 1
  1. 1.Institut für Pharmazie und Molekulare BiotechnologieUniversität HeidelbergHeidelbergGermany
  2. 2.Winpoort FarmNamibia

Personalised recommendations