Lithuanian Mathematical Journal

, Volume 37, Issue 1, pp 74–80 | Cite as

On the function σδ(n)

  • E. Stankus


Zeta Function Asymptotic Formula Prime Divisor Simple Pole Riemann Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. T. Bateman, The distribution of values of the Euler function,Acta Arith.,21, 329–344 (1972).MATHMathSciNetGoogle Scholar
  2. 2.
    R. E. Dressler, An elementary proof of a theorem of Erdős on the sum of divisors function,J. Number Theory,4, 532–536 (1972).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Erdős, Some remarks on Euler's ϕ-function and some related problems,Bull. Amer. Math. Soc.,51, 540–544 (1945).MathSciNetCrossRefGoogle Scholar
  4. 4.
    H.-E. Richert, Zur Abshätzung der Riemannshen Zetafunktion in der Nähe der Vertikalen σ=1,Math. Ann.,169, 97–101 (1967).MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. J. Scourfield, On some sums involving the largest prime divisor ofn, Acta Arith.,59, 339–363 (1991).MATHMathSciNetGoogle Scholar
  6. 6.
    E. Stankus, On some generalized numbers,Liet. Matem. Rink.,36, 144–154 (1996).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • E. Stankus

There are no affiliations available

Personalised recommendations