Modulation of long-term memory by delayed administration of the amide of L-pyroglutamyl-D-alanine, a nootropic agent, in spaced and massed training in rats

  • A. L. Vysotskii
  • D. L. Vysotskii
  • T. A. Gudasheva
  • R. U. Ostrovskaya
  • K. V. Anokhin


The effects of the nootropic agent L-pyroglutamyl-D-alanine amide (given at a dose of 0.5 mg/kg i.p., 24 h after training) on long-term memory were studied in rats with contextual and conditioned reflex freezing. Spaced and massed training protocols were used; habit formation was tested 72 h after training. In massed training, which led to lower levels of learning as compared with spaced training, the dipeptide improved contextual memory, while in spaced training, which led to higher initial learning levels, dosage with dipeptide improved reproduction of the habit. Testing of responses to the conditioned signal (a sound) 96 h after training, revealed no significant differences between groups. This is evidence for the selectivity of the effect of L-pyroglutamyl-D-alanine amide for contextual memory.

Key Words

Learning memory dipeptide nootrope 


  1. 1.
    P. K. Anokhin,The Biology and Neurophysiology of the Conditioned Reflex [in Russian], Meditsina, Moscow (1968).Google Scholar
  2. 2.
    I. P. Ashmarin and E. P. Karazeeva, “Neuropeptides,” in:Neurochemistry [in Russian], Institute of Biomedical Chemistry (Russian Academy of Medical Sciences) Press, Moscow (1996).Google Scholar
  3. 3.
    O. A. Gomazdkov,Physiologically Active Peptides. A Handbook [in Russian], Moscow (1995).Google Scholar
  4. 4.
    T. A. Gudasheva, R. U. Ostrovskaya, S. S. Trofimov, et al., “Peptide analogs of piracetam as ligands for putative nootrope receptors,”Khim. Farm. Zh.,11, 1322–1329 (1985).Google Scholar
  5. 5.
    N. V. Lebedeva, I. Kh. Zaretskaya, and V. N. Volkov, in:The Clinical Significance of the Agent Nootropil [in Russian], Brussels (1976).Google Scholar
  6. 6.
    M. D. Mashkovskii, L. F. Roshchina, and A. I. Polezhaeva,Farmakol. Toksikol.,6, 676–683 (1977).Google Scholar
  7. 7.
    R. U. Ostrovskaya, T. A. Gudasheva, S. S. Trofimov, et al., “Behavioral and electrophysiological characterization of L-pyroglutamyl-D-alanine amide, a peptide analog of piracetam,”Byull. Éksp. Biol. Med.,11, 576–579 (1987).Google Scholar
  8. 8.
    K. V. Sudakov,A General Theory of Functional Systems [in Russian], Meditsina, Moscow (1984).Google Scholar
  9. 9.
    D. A. Balota, J. M. Duchek, and R. Paullin, “Age-related differences in the impact of spacing, lag, and retention interval,”Psychol. Aging,4, 3–9 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Bourtchuladze, B. Frenguelli, J. Blendy, D. Cioffi, G. Schulz, and A. Silva, “Deficient long-term memory in mice with target mutation of the cAMP-responsive element-binding protein,”Cell,79, 59–68 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    A. N. Chepkova, N. V. Doreulee, S. S. Trofimov, T. A. Gudasheva, R. U. Ostrovskaya, and V. G. Skrebitsy, “Nootropic compound L-pyroglutamyl-D-alanine-amide restores hippocampal long-term potentiation impaired by exposure to ethanol in rats,”Neursci. Lett.,188, 163–166 (1995).CrossRefGoogle Scholar
  12. 12.
    M. S. Fanselow, “The adaptive function of conditioned defensive behaviour. An ecological approach to Pavlovian stimulus substitution theory,” in:Ethoexperimental Approaches to the Study of Behaviour, P. F. B. Blanchard, D. C. Blanchard, and S. Parmigiani (Eds.), Kluwer, Dordrecht (1989).Google Scholar
  13. 13.
    M. Gettinger, N. D. Bryant and H. R. Mayne, “Designing spelling instructions for learning-disabled children. An emphasis on unit size, distributed practice, and training for transfer,”J. Spec. Education,16, 439–448 (1982).CrossRefGoogle Scholar
  14. 14.
    A. M. Glenberg, “Component-level theory of the effects of spacing of repetitions on recall and recognition,”Memory, Cognition,7, 95–112 (1979).Google Scholar
  15. 15.
    A. M. Glenberg,Distributed Practice Effects. Encylopedia of Learning and Memory, L. R. Squire (Ed.), Macmillan Publ. Comp., New York (1992).Google Scholar
  16. 16.
    R. L. Green, “Spacing effects in memory. Evidence for a twoprocess acount,”J. Exp. Psychol. Learning, Memory, Cognition,15, 371–377 (1989).CrossRefGoogle Scholar
  17. 17.
    F. A. Holloway and R. A. Wansley, “Multiphasic retention deficits at periodic intervals after passive avoidance learning,”Science,180, 208–210 (1973).PubMedGoogle Scholar
  18. 18.
    F. A. Holloway and R. A. Wansley, “Multiple retenion deficits at periodic intervals after active and passive avoidance learning,”Behavioral Biol.,9, 1–14 (1973).CrossRefGoogle Scholar
  19. 19.
    J. Kim and M. Fanselow, “Modality-specific retrograde amnesia of fear,”Science,256, 675–676 (1992).PubMedGoogle Scholar
  20. 20.
    J. H. Kogan, P. W. Frankland, J. A. Blendy, J. Coblentz, Z. Marowitz, G. Schutz, and A. J. Silva, “Spaced training induces normal long-term memory in CREB mutant mice,”Current Biol.,7, 1–11 (1996).CrossRefGoogle Scholar
  21. 21.
    C. Mondadori, B. Hengerer, T. Ducret, and J. Borkowski, “Delayed emergence of effects of memory-enhancing drugs: implication for the dynamics of long-term memory,”Proc. Natl. Acad. Sci. USA Psychology,91, 2041–2045 (1994).CrossRefGoogle Scholar
  22. 22.
    R. Morris, “Development of a water-maze procedure for studying spatial learning in the rat,”J. Neurosci. Met.,11, 47–60 (1984).CrossRefGoogle Scholar
  23. 23.
    R. Phillips and J. LeDoux, “Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning,”Behav. Neurosci.,106, No. 2, 274–285 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    C. P. Rea and V. Modigliani, “The effect of expanded versus massed practice on the retention of multiplication facts and spelling lists,”Human Learning,4, 11–18 (1985).Google Scholar
  25. 25.
    C. P. Rea and V. Modigliani, “The spacing effect in 4- to 9-year-old children,”Memory Cognition,15, 436–443 (1987).PubMedGoogle Scholar
  26. 26.
    B. Roquefeuil, E. Escuret, and E. Viguie,Aggressologie,16, 43–62 (1975).Google Scholar
  27. 27.
    T. Tully, T. Preat, S. C. Boynton, and M. D. Vecchio, “Genetic dissection of consolidated memory inDrosophila,”Cell,79, 35–47 (1994).PubMedCrossRefGoogle Scholar
  28. 28.
    J. C. P. Yin, J. S. Wallach, M. D. Vecchio, E. L. Wilder, H. Zhou, W. G. Quinn, and T. Tully, “Induction of a dominant negative CREB transgene specifically blocks long-term memory inDrosophilaCell,79, 49–58 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. L. Vysotskii
    • 1
  • D. L. Vysotskii
    • 1
  • T. A. Gudasheva
    • 2
  • R. U. Ostrovskaya
    • 2
  • K. V. Anokhin
    • 1
  1. 1.Science Research Institute of PharmacologyRussian Academy of Medical Sciences
  2. 2.P. K. Anokhin Science Research Institute of Normal PhysiologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations