Advertisement

Plant and Soil

, Volume 136, Issue 1, pp 111–119 | Cite as

Influence of maize root mucilage on soil aggregate stability

  • Jean Louis Morel
  • Leila Habib
  • Sylvain Plantureux
  • Armand Guckert
Article

Abstract

This study was undertaken to determine the effects of root exudates on soil aggregate stability. Root mucilage was collected from two-month old maize plants (Zea mays L.) Mucilage and glucose solutions were added at a rate of 2.45 g C kg−1 dry soil to silty clay and silt loam soils. Amended soils, placed in serum flasks, were incubated for 42 d with a drying-wetting cycle after 21 d. Evolved CO2 was measured periodically as well as the water-stable aggregates and soluble sugar and polysaccharide content of the soil. In mucilage-amended soils CO2 evolution started with a lag phase of 2–3 days, which was not observed in glucose-amended soils. There was then a sharp increase in evolved CO2 up to day 7. During the second incubation period there were only small differences in evolved C between treatments. Incorporation of mucilage in both soils resulted in a spectacular and immediate increase in soil aggregate stability. Thereafter, the percent of water-stable aggregates quickly decreased parallel to microbial degradation. On completion of the incubation, aggregate stability in the silty clay soil was still significantly higher in the presence of mucilage than in the control. This work supports the assumption that freshly released mucilage is able to stick very rapidly to soil particles and may protect the newly formed aggregates against water destruction. On the silty clay, microbial activity contributes to a stabilization of these established organo-mineral bounds.

Key words

adsorption aggregation maize root mucilage rhizosphere stable aggregates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breisch H, Guckert A and Reisinger O 1975 Etude au microscope électronique de la zone apicale de racines de maïs. Soc. Bot. Fr. Coll. Rhizosphère, 122, 55–60.Google Scholar
  2. Cortez J and Billes G 1982 Rôle des ions calcium dans la formation du mucilage deZea mays. Act. Oecol., Oecol. Plant. 17, 67–78.Google Scholar
  3. Dart P J and Mercer F V 1964 The legume rhizosphere. Arch. Mikrobiol. 47, 344–378.CrossRefGoogle Scholar
  4. Dorioz J M and Robert M 1987 Aspects microscopiques des relations entre les microorganismes ou végétaux et les argiles: Conséquence sur les microorganisations et la microstructuration des sols. Micromorphologie des sols, 353–361.Google Scholar
  5. Drew M C 1979 Properties of roots which influence rates of adsorption.In The Soil-Root Interface. Eds. J L Harley and R Scott-Russell. pp 21–38. Academic Press London, New York, San Francisco.Google Scholar
  6. Dubois M, Gilles K A, Hamilton J K, Rebers P A and Smith F 1956 Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  7. Féodoroff A 1960 Evolution de la stabilité structurale d’un sol (Indice S). Nouvelles normes d’emploi pour l’appareil à tamiser. Ann. Agron. 11, 651–659.Google Scholar
  8. Greenland D J 1979 The physics and chemistry of the soil-root interface: Some comments.In The Soil-Root Interface. Eds. J L Harley and R Scott Russell. pp 83–98. Academic Press, London, New York, San Francisco.Google Scholar
  9. Guckert A 1973 Contribution à l’étude des polysaccharides dans les sols et leur rôle dans les mécanismes d’agrégation. Thèse d’état, Université de Nancy 1. 124 p.Google Scholar
  10. Guckert A, Breisch H and Reisinger O 1975. Interface solracine. I. Étude au microscope électronique des relations mucilages-argile-microorganismes. Soil Biol. Biochem. 7, 241–250.CrossRefGoogle Scholar
  11. Habib L 1988 Etude de l’Agrégation dans la Rhizosphère du Maïs: Rôle des Mucilages Racinaires. Thèse de Doctorat de L’Institut National Polytechnique de Lorraine, Nancy. 115 p.Google Scholar
  12. Habib L, Chenu C, Morel J L and Guckert A 1990 Adsorption de mucilages racinaires de maïs sur des argiles homoioniques: Conséquences sur la micro-organisation des complexes formés. C. R. Acad. Sci. 310, 1541–1546.Google Scholar
  13. Helal H M and Sauerbeck D R 1986. Influence of plant roots on the stability of soil organic matter and of soil aggregates.In Transactions of the 13th Congress of the Intern. Soil Sci. Soc. 3, 776–777.Google Scholar
  14. Hénin S, Monnier G and Combeau A 1958 Méthode pour l’étude de la stabilité de la structure des sols. Ann. Agron. 9, 73–92.Google Scholar
  15. Jenny H and Grossenbacher K 1963 Root soil boundary as seen in the electron microscope. Soil. Sci. Soc. Am. Proc. 27, 273–277.CrossRefGoogle Scholar
  16. Jones D D and Morre D J 1967 Golgi apparatus mediated polysaccharide secretion secretion by outer root cap cells ofZea mays. II. Isolation and characterization of the secretory product. Z. Pflanzenernaehr. Bodenkd. 56, 166–169.Google Scholar
  17. Mary B, Morel J L, Mariotti a and Guckert A 1991 Dynamics of carbon and nitrogen during biodegradation of plant residues in soils. Soil Biol. Biochem. (submitted).Google Scholar
  18. Monnier G 1965 Action des matières organiques sur la stabilité structurale des sols. Thèse, Faculté des sciences, Paris.Google Scholar
  19. Monroe C D and Kladivko E J 1987 Aggregate stability of a silt loam soil as affected by roots of maize, soybeans and wheat. Com. in Soil Sci. and Plant Anal. 18, 1077–1087.CrossRefGoogle Scholar
  20. Morel J L, Mench M and Guckert A 1986 Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol. Fertil. Soils 2, 29–34.CrossRefGoogle Scholar
  21. Morel J L, Andreux F, Habib L and Guckert A 1987 Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium. Biol. Fertil. Soils 5, 13–17.CrossRefGoogle Scholar
  22. Oades J M 1978 Mucilages at the root surface. J. Soil Sci. 29, 1–16.CrossRefGoogle Scholar
  23. Oades J M 1984 Soil organic matter and structural stability; mechanisms and implication for management. Plant and Soil 76, 319–337.CrossRefGoogle Scholar
  24. Reid J B and Goss M J 1981 Effect of living roots of different plant species on the aggregate stability of two arable soils. J. Soil Sci. 32, 521–541.CrossRefGoogle Scholar
  25. Reid J B and Goss M J 1982 Interactions between soil dyring due to plant water use and decrease in aggregate stability caused by maize roots. J. Soil Sci. 33, 47–53.CrossRefGoogle Scholar
  26. Reid J B, Goss M J and Robertson P D 1982 Relationship between the decrease in soil stability effected by the growth of maize roots and changes in organically bound iron and aluminium. J. Soil Sci. 33, 397–410.CrossRefGoogle Scholar
  27. Tisdall J M and Oades J M 1979 Stabilization of soil aggregates by the root systems of rye-grass. Aust. J. Soil Res. 17, 429–441.CrossRefGoogle Scholar
  28. Tisdall J M and Oades J M 1982 Organic matter and waterstable aggregates in soils. J. Soil Sci. 33, 141–163.CrossRefGoogle Scholar
  29. Turcheneck L W and Oades L M 1978 Organo-clay particles in soils.In Modification of Soil Structure. Eds. W W Emerson, R D Bond and A R Dexter. pp 137–144. Wiley, New York.Google Scholar
  30. Vermeer M C and McCully M E 1982 The rhizosphere in Zea: New insight into its structure and development. Planta 156, 45–61.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Jean Louis Morel
    • 1
  • Leila Habib
    • 1
  • Sylvain Plantureux
    • 1
  • Armand Guckert
    • 1
  1. 1.Laboratory INRA ‘Agronomy and Environment’Ecole Nationale Supérieure d’Agronomie et des Industries AlimentairesVandoeuvre les NancyFrance

Personalised recommendations