Functional Analysis and Its Applications

, Volume 33, Issue 2, pp 144–147 | Cite as

An abstract analog of the krylov-bogolyubov transformation in the perturbation theory of linear operators

  • A. G. Baskakov
Brief Communications


Linear Operator Complex Banach Space Transformation Operator Closed Linear Operator Spectral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yu. Mitropol’skii, The Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev, 1971.Google Scholar
  2. 2.
    Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces [in Russian], Nauka, Moscow, 1970.Google Scholar
  3. 3.
    V. I. Arnold, Supplementary Chapters of Ordinary Differential Equations [in Russian], Nauka, Moscow, 1979.Google Scholar
  4. 4.
    K. O. Friedrichs, Perturbation of Spectra in Hilbert Space, Amer. Math. Soc. Providence, R.I., 1965.MATHGoogle Scholar
  5. 5.
    A. G. Baskakov, Izv. RAN, Ser. Mat.,58, No. 4, 3–32 (1994).MATHMathSciNetGoogle Scholar
  6. 6.
    N. Dunford and J. T. Schwartz, Linear Operators. III: Spectral Operators, Wiley, New York-London-Sydney, 1971.Google Scholar
  7. 7.
    A. G. Baskakov, In: Proceedings of the IX International Conference on Nonlinear Oscillations [in Russian], Vol. 1. Analytical Methods of Theory of Nonlinear Oscillations, 1984, pp. 75–79.Google Scholar
  8. 8.
    A. G. Baskakov, Ukr. Mat. Zh.,36, No. 5, 606–611 (1984).MATHMathSciNetGoogle Scholar
  9. 9.
    N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Nauka, Moscow, 1965.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. G. Baskakov

There are no affiliations available

Personalised recommendations