Skip to main content
Log in

Characterization of the ColE1 mobilization region and its protein products

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A third of the 6.6 kb genome of ColE1 is devoted to mobilization (mob) genes necessary to promote its specific transfer in the presence of conjugative plasmids. Themob region is genetically complex: twomob genes are entirely overlapped by a third. Oligonucleotide-directed mutagenesis was used to insert an amber codon into one of the overlapped genes and make possible a full complementation analysis ofmob. Fourmob genes essential for mobilization by R64drd11 were thus identified. Fragments ofmob were subcloned under control of the Ptac promoter in a suitable vector, overexpressed in minicells and the mobilization proteins visualized. A comprehensive alignment of themob region of ColE1 with those of its close relatives ColK and ColA demonstrating that the four essentialmob genes are conserved is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybridtrp-lac promoter useful for regulated expression of cloned genes inEscherichia coli. Gene 25: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Archer JAK (1985) Sequence analysis of plasmid ColK. PhD Thesis, University of Glasgow, Scotland

    Google Scholar 

  • Bachmann BJ (1972) Pedigrees of some mutant strains ofEscherichia coli K-12. Bacteriol Rev 36: 525–557

    PubMed  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513–1523

    PubMed  CAS  Google Scholar 

  • Boyd AC, Sherratt DJ (1986) Polar mobilization of theE. coli chromosome by the ColE1 transfer origin. Mol Gen Genet 203: 496–504

    Article  PubMed  CAS  Google Scholar 

  • Boyd AC, Charles IG, Keyte JW, Brammar WJ (1986) Isolation and computer-aided characterization ofMmeI, a Type II restriction endonuclease fromMethylophilus methylotrophus. Nucleic Acids Res 14: 5255–5274

    PubMed  CAS  Google Scholar 

  • Brosius J (1984) Toxicity of an overproduced foreign gene product inEscherichia coli and its use in plasmid vectors for the selection of transcription terminators. Gene 27: 161–172

    Article  PubMed  CAS  Google Scholar 

  • Cesareni G, Muesing MA, Polisky B (1982) Control of ColE1 DNA replication: therop gene product negatively affects transcription from the replication primer promoter. Proc Natl Acad Sci USA 79: 6313–6317

    Article  PubMed  CAS  Google Scholar 

  • Chan PT, Ohmori H, Tomizawa J-I, Lebowitz J (1985) Necleotide sequence and gene organization of ColE1 DNA. J Biol Chem 260: 8925–8935

    PubMed  CAS  Google Scholar 

  • Chen H-Z, Zubay G (1983) Analysis of ColE1 expressionin vitro after chromosome fragmentation. J Bacteriol 154: 650–655

    PubMed  CAS  Google Scholar 

  • Clewell DB, Helinski DR (1969) Supercoiled circular DNA-protein complex inEscherichia coli: purification and induced conversion to an open circular DNA form. Proc Natl Acad Sci USA 62: 1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Collins J (1979) Cell-free synthesis of protein coding for mobilization functions of ColE1 and transposition functions of Tn3. Gene 6: 29–42

    Article  PubMed  CAS  Google Scholar 

  • Demerec M, Adelberg EA, Clark AJ, Hartman PE (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54: 61–76

    PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    PubMed  CAS  Google Scholar 

  • Dougan G, Sherratt DJ (1977) The transposon Tn1 as a probe for studying ColE1 structure and function. Mol Gen Genet 151: 151–160

    Article  PubMed  CAS  Google Scholar 

  • Ebina Y, Kishi F, Nakazawa T, Nakazawa A (1979) Gene expressionin vitro of colicin E1 plasmid. Nucleic Acids Res 7: 636–649

    Google Scholar 

  • Finnegan J, Sherratt D (1982) Plasmid ColE1 conjugal mobility: the nature ofbom: a region required incis for transfer. Mol Gen Genet 185: 344–351

    Article  PubMed  CAS  Google Scholar 

  • Fox TD (1987) Natural variation in the genetic code. Annu Rev Genet 27: 67–91

    Google Scholar 

  • Glickman B, Van Den Elsen P, Radman M (1978) Induced mutagenesis indam mutants ofE. coli: a role for 6-methyladenine residues in mutation avoidance. Mol Gen Genet 163: 307–312

    Article  PubMed  CAS  Google Scholar 

  • Grundstrom T, Zenke WM, Wintzerith M, Matthes HWD, Staub A, Chambon P (1985) Oligonucleotide-directed mutagenesis by microscale ‘shot-gun’ gene synthesis. Nucleic Acids Res 13: 3305–3316

    PubMed  CAS  Google Scholar 

  • Hallewell RA, Sherratt DJ (1976) Isolation and characterization of ColE2 plasmid mutants unable to kill colicin-sensitive cells. Mol Gen Genet 146: 239–245

    Article  PubMed  CAS  Google Scholar 

  • Harr R, Haggstrom M, Gustaffson P (1983) Search algorithm for pattern matching analysis of nucleic-acid sequences. Nucleic Acids Res 11: 2943–2957

    PubMed  CAS  Google Scholar 

  • Inselburg J, Applebaum B (1978) Proteins synthesized in minicells containing plasmid ColE1 and its mutants. J Bacteriol 133: 1444–1451

    PubMed  CAS  Google Scholar 

  • Ippen-Ihler KA, Minkley EG (1986) The conjugation system of F, the fertility factor ofEscherichia coli. Annu Rev Genet 20: 593–624

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Lovett MA, Helinski DR (1975) Relaxation complexes of plasmid DNA and protein. II. Characterization of the proteins associated with the unrelaxed and relaxed complexes of plasmid ColE1. J Biol Chem 250: 8790–8795

    PubMed  CAS  Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9: 309–321

    PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Morlon J, Chartier M, Bidaud M, Lazdunski C (1988a) The complete nucleotide sequence of the colicinogenic plasmid ColA. High extent of homology with ColE1. Mol Gen Genet 211: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Morlon J, Sherratt D, Lazdunski C (1988b) Identification of functional regions of the colicinogenic plasmid ColA. Mol Gen Genet 211: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim DS, Yanofsky C (1980) Translational coupling during expression of the tryptophan operon ofEscherichia coli. Genetics 95: 785–795

    PubMed  CAS  Google Scholar 

  • Queen C, Rosenberg M (1981) A promotor of pBR322 activated by cAMP receptor protein. Nucleic Acids Res 9: 3365–3377

    PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Hong GF, Hill DF, Peterson GB (1982) Nucleotide sequence of bacteriophage λ DNA. J Mol Biol 162: 729–773

    Article  PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence ofEscherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Stewart GSAB, Lubinsky-Mink S, Jackson CG, Cassel A, Kuhn J (1986) pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid 15: 172–181

    Article  PubMed  CAS  Google Scholar 

  • Stormo GD, Schneider TD, Gold L, Ehrenfeucht A (1982) Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites inE. coli. Nucleic Acids Res 10: 2997–3011

    PubMed  CAS  Google Scholar 

  • Summers D, Yaish S, Archer J, Sherratt D (1985) Multimer resolution systems of ColE1 and ColK: localisation of the crossover site. Mol Gen Genet 201: 334–338

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1983) An optimized freeze-sequeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 132: 14–19

    Article  PubMed  CAS  Google Scholar 

  • Twigg AJ, Sherratt DJ (1980) Trans-complementable copy-number mutants of plasmid ColE1. Nature 283: 216–218

    Article  PubMed  CAS  Google Scholar 

  • Van Putten AJ, Jochems GJ, de Lang R, Nijkamp HJJ (1987) Structure and nucleotide sequence of the region encoding the mobilization proteins of plasmid CloDF13. Gene 51: 171–178

    Article  PubMed  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Warren G, Sherratt D (1977) Complementation of transfer deficient ColE1 mutants. Mol Gen Genet 151: 197–201

    Article  PubMed  CAS  Google Scholar 

  • Willetts NS, Wilkins B (1984) Processing of plasmid DNA during bacterial conjugation. Microbiol Rev 48: 24–41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher Boyd, A., Archer, J.A.K. & Sherratt, D.J. Characterization of the ColE1 mobilization region and its protein products. Molec. Gen. Genet. 217, 488–498 (1989). https://doi.org/10.1007/BF02464922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464922

Key words

Navigation