Molecular and General Genetics MGG

, Volume 217, Issue 2–3, pp 464–470 | Cite as

Chromatin structure of the 5′ flanking region of the yeastLEU2 gene

  • J. F. Martínez-García
  • F. Estruch
  • J. E. Pérez-Ortín


The chromatin structure of theLEU2 gene and its flanks has been studied by means of nuclease digestion, both with micrococcal nuclease and DNase I. The gene is organized in an array of positioned nucleosomes. Within the promoter region, the nucleosome positioning places the regulatory sequences, putative TATA box and upstream activator sequence outside the nucleosomal cores. The tRNA3 Leu gene possesses a characteristic structure and is protected against nucleases. Most of the 5′ flank is sensitive to DNase I digestion, although no clear hypersensitive sites were found. The chromatin structure is independent of either the transcriptional state of the gene or the chromosomal or episomal location. Finally, in the plasmid pJDB207, which lacks most of the promoter, we have found that the chromatin structure of the coding region is similar to that of the wild-type allele.

Key words

Nucleosome positioning LEU2 gene Saccharomyces cerevisiae tRNA3Leu gene Chromatin 



micrococcal nuclease


open reading frame


upstream activator sequence


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almer A, Hörz W (1986) Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of thePHO5/PHO3 locus in yeast. EMBO J 5:2681–2687PubMedGoogle Scholar
  2. Almer A, Rudolph H, Hinnen A, Hörz W (1986) Removal of positioned nucleosomes from the yeastPHO5 promoter uponPHO5 induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696PubMedGoogle Scholar
  3. Andreadis A, Hsu YP, Kohlhaw GB, Schimmel P (1982) Nucleotide sequence of yeastLEU2 shows 5′-noncoding region has sequences cognate to leucine. Cell 31:319–327PubMedCrossRefGoogle Scholar
  4. Andreadis A, Hsu YP, Hermodson M, Kohlhaw GB, Schimmel P (1984) YeastLEU2. Repression of RNA levels by leucine and primary structure of the gene product. J Biol Chem 259:8059–8062PubMedGoogle Scholar
  5. Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109PubMedCrossRefGoogle Scholar
  6. Beggs JD (1981) Multiple-copy yeast plasmid vectors. In: Von Wettstein D, Friis J, Kielland-Brandt M, Stenderup A (eds) Molecular genetics in yeast. Alfred Benzon Symp., Munksgaard, Copenhagen, pp 383–390Google Scholar
  7. Bergman LW, Stranathan MC, Preis LM (1986) Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) ofSaccharomyces cerevisiae. Mol Cell Biol 6:38–46PubMedGoogle Scholar
  8. Brown HD, Satyanarayana T, Umbarger HE (1975) Biosynthesis of branched-chain amino acids in yeast: effect of carbon source on leucine biosynthetic enzymes. J Bacteriol 121:959–969PubMedGoogle Scholar
  9. DeLotto R, Schedl P (1984) Internal promoter elements of transfer RNA genes are preferentially exposed in chromatin. J Mol Biol 179:607–628PubMedCrossRefGoogle Scholar
  10. Drew HR, Calladine CR (1987) Sequence-specific positioning of core histones on an 860 base-pair DNA. Experiment and theory. J Mol Biol 195:143–173PubMedCrossRefGoogle Scholar
  11. Eissenberg JC, Cartwright JL, Thomas GH, Elgin SCR (1985) Select topics in chromatin structure. Annu Rev Genet 19:485–536PubMedCrossRefGoogle Scholar
  12. Emr S, Scheckman R, Flersel MC, Thorner J (1983) An MF α-1-SUC2 (α-factor-invertase) gene fashion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci USA 80:7080–7084PubMedCrossRefGoogle Scholar
  13. Erhart E, Hollenberg CP (1983) The presence of a defectiveLEU2 gene on 2 μm DNA recombinant plasmids ofSaccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635PubMedGoogle Scholar
  14. Friden P, Schimmel P (1988)LEU3 ofSaccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol Cell Biol 8:2690–2697PubMedGoogle Scholar
  15. Froman BE, Tait RC, Rodriguez RL (1984) Nucleotide sequence of the 3′ terminal region of theLEU2 gene fromSaccharomyces cerevisiae. Gene 31:257–261PubMedCrossRefGoogle Scholar
  16. Hinnebusch AG (1987) The general control of amino acid biosynthetic genes in the yeastSaccharomyces cerevisiae. CRC Crit Rev Biochem 21:277–317Google Scholar
  17. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933PubMedCrossRefGoogle Scholar
  18. Hörz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9:2643–2658PubMedGoogle Scholar
  19. Huibregtse JM, Claire FE, Engelke DR (1987) Comparison of tRNA gene transcription complexes formedin vitro and in nuclei. Mol Cell Biol 7:3212–3220PubMedGoogle Scholar
  20. Jiménez A, Davies A (1980) Expression of a transposable antibiotic resistance element inSaccharomyces. Nature 289:869–871CrossRefGoogle Scholar
  21. Kunkel GR, Martinson HG (1981) Nucleosomes will not form on double-stranded RNA or over poly(dA). poly(dT) tracts in recombinant DNA. Nucleic Acids Res 9:6869–6888PubMedGoogle Scholar
  22. Lohr D, Ide G (1979) Comparison of the structure and transcriptional capability of growning phase and stationary yeast chromatin: a model for reversible gene activation. Nucleic Acids Res 6:1909–1927PubMedGoogle Scholar
  23. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  24. Martinez-Arias A, Yost HJ, Casadaban MJ (1984) Role of an upstream regulatory element in leucine repression ofSaccharomyces cerevisiae LEU2 gene. Nature 307:740–742PubMedCrossRefGoogle Scholar
  25. Mortimer RK, Schild D (1980) Genetic map ofSaccharomyces cerevisiae. Microbiol Rev 44:519–571PubMedGoogle Scholar
  26. Nelson HCM, Finch JT, Luisi BF, Klug A (1987) The structure of an oligo(dA). oligo(dT) tract and its biological implications. Nature 330:221–226PubMedCrossRefGoogle Scholar
  27. Neubauer B, Linxweiler W, Hörz W (1986) DNA engineering shows that nucleosome phasing on the African green monkey satellite is the result of multiple histone-DNA interactions. J Mol Biol 190:639–645PubMedCrossRefGoogle Scholar
  28. Nobile C, Nickol JY, Martin RG (1986) Nucleosome phasing on a DNA fragment from the replication origin of simian virus 40 and rephasing upon cruciform formation of the DNA. Mol Cell Biol 6:2916–2922PubMedGoogle Scholar
  29. Pérez-Ortín JE, Estruch F (1988) A rapid method for the screening of plasmids in transformed yeast strains. Curr Microbiol 17:19–22CrossRefGoogle Scholar
  30. Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1986a) Slidingend-labelling. A method to avoid artifacts in nucleosome positioning. FEBS Lett 208:31–33PubMedCrossRefGoogle Scholar
  31. Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1986b) DNase I sensitivity of the chromatin of the yeastSUC2 gene for invertase. Mol Gen Genet 205:422–427PubMedCrossRefGoogle Scholar
  32. Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1987) Fine analysis of the chromatin structure of the yeastSUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15:6937–6956PubMedGoogle Scholar
  33. Pérez-Ortín JE, Matallana E, Franco L (1989) Chromatin structure of yeast genes. Yeast (in the press)Google Scholar
  34. Prunell A (1982) Nucleosome reconstitution on plasmid-inserted poly(dA).poly(dT). EMBO J 1:173–179PubMedGoogle Scholar
  35. Ratzkin B, Carbon J (1977) Functional expression of cloned yeast DNA inEscherichia coli. Proc Natl Acad Sci USA 74:487–491PubMedCrossRefGoogle Scholar
  36. Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675PubMedCrossRefGoogle Scholar
  37. Simpson RT (1986) Nucleosome positioningin vivo andin vitro. BioEssays 4:172–176PubMedCrossRefGoogle Scholar
  38. Struhl K (1982) Promoter elements, regulatory elements, and chromatin structure of the yeasthis3 gene. Cold Spring Harbor Symp Quant Biol 47:901–910Google Scholar
  39. Szent-Györgyi C, Finkelstein DB, Garrad WT (1987) Sharp boundaries demarcate the chromatin structure of a yeast heatshock gene. J Mol Biol 193:71–80PubMedCrossRefGoogle Scholar
  40. Thoma F (1986) Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin. J Mol Biol 190:177–190PubMedCrossRefGoogle Scholar
  41. Thoma F, Simpson RT (1985) Local protein-DNA interactons may determine nucleosome positions on yeast plasmids. Nature 315:250–252PubMedCrossRefGoogle Scholar
  42. Thoma F, Bergman LW, Simpson RT (1984) Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol 177:715–733PubMedCrossRefGoogle Scholar
  43. Thomas JO, Furber V (1976) Yeast chromatin subunit structure. FEBS Lett 66:274–280PubMedCrossRefGoogle Scholar
  44. Wu C (1980) The 5′ ends ofDrosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 280:854–860CrossRefGoogle Scholar
  45. Wu C (1984) Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311:81–84PubMedCrossRefGoogle Scholar
  46. Zakian VA (1981) Origin of replication fromXenopus laevis mitochondrial DNA promotes high frequency transformation of yeast Proc Natl Acad Sci USA 78:3128–3132PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. F. Martínez-García
    • 1
  • F. Estruch
    • 1
  • J. E. Pérez-Ortín
    • 1
  1. 1.Departmento de Bioquímica y Biología Molecular, Facultades de CienciasUniversitat de ValènciaValènciaSpain

Personalised recommendations