Skip to main content
Log in

Heterogeneous genomic amplification inStreptomyces glaucescens: Structure, location and junction sequence analysis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Certain chromosomal markers inStreptomyces glaucescens behave unstably, being lost at high frequency as a result of extensive genomic deletion. Additionally, mutant strains possessing such deletions frequently display intense DNA amplification. With the help of a wild-type cosmid library we investigated the structure of the amplified DNA sequences (ADS) and the corresponding wild-type amplifiable units of DNA (AUD). The reiterations were heterogeneous in location, copy number and sequences involved and originated predominantly from a single 100 kb region of the chromosome called the AUD locus. All strains bearing reiterations possessed associated deletions which terminated either close to or at the ADS. The termini of four AUDs were sequenced in order to gain more knowledge about these heterogeneous amplifications. In three of the four cases investigated small, interrupted homologies were found bordering the AUDs. With the help of orthogonal-field-alternation gel electrophoresis (OFAGE) we were able to visualize a tandem reiteration of more than 1500 kb in length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29:319–328

    Article  PubMed  CAS  Google Scholar 

  • Altenbuchner J, Cullum J (1984) DNA amplification and an unstable arginine gene inStreptomyces lividans 66. Mol Gen Genet 195:134–138

    Article  PubMed  CAS  Google Scholar 

  • Altenbuchner J, Cullum J (1985) Structure of an amplifiable DNA sequence inStreptomyces lividans 66. Mol Gen Genet 201:192–197

    Article  PubMed  CAS  Google Scholar 

  • Betzler M, Dyson P, Schrempf H (1987) Relationship of an unstable ArgG gene to a 5.7-kilobase amplifiable DNA sequence inStreptomyces lividans 66. J Bacteriol 169:4804–4810

    PubMed  CAS  Google Scholar 

  • Birch A, Häusler A, Vögtli M, Krek W, Hütter R (1989) Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements inStreptomyces glaucescens. Mol Gen Genet 217:447–458

    PubMed  CAS  Google Scholar 

  • Birnboim HC, Doly JC (1978) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 11:8019–8029

    Google Scholar 

  • Carle GF, Olson MV (1985) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82:3756–3760

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Hopwood DA, Kieser T, Thompson CJ (1982) Gene cloning inStreptomyces. Curr Topics Microbiol Immunol 96:69–95

    CAS  Google Scholar 

  • Crameri R, Kieser T, Ono H, Sanchez J, Hütter R (1983) Chromosomal instability inStreptomyces glaucescens mapping of streptomycin-sensitive mutants. J Gen Microbiol 129:519–527

    PubMed  CAS  Google Scholar 

  • Cullum J, Altenbuchner J, Flett F, Piendl W, Platt J (1986) DNA amplification and genetic instability inStreptomyces. Biotech Genet Eng Rev 4:59–78

    CAS  Google Scholar 

  • de Jonge P, de Jough FCM, Meijers R, Yde Steensma H, Scheffers WA (1986) Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts Yeast 2:193–204

    Article  PubMed  Google Scholar 

  • Demuyter P, Leblond P, Decaris B, Simonet JM (1988) Characterization of two families of spontaneously amplifiable units of DNA inStreptomyces ambofaciens. J Gen Microbiol 134:2001–2007

    PubMed  CAS  Google Scholar 

  • Dyson P, Schrempf H (1987) Genetic instability and DNA amplification inStreptomyces lividans 66. J Bacteriol 169:4796–4803

    PubMed  CAS  Google Scholar 

  • Edlund T, Normark S (1981) Recombination between short DNA homologies causes tandem duplication. Nature 292:269–271

    Article  PubMed  CAS  Google Scholar 

  • Fishman SE, Hershberger CL (1983) Amplified DNA inStreptomyces fradiae. J Bacteriol 155:459–466

    PubMed  CAS  Google Scholar 

  • Fishman SE, Rosteck PR, Hershberger CL (1985) A 2.2-kilobase repeated DNA segment is associated with DNA amplification inStreptomyces fradiae. J Bacteriol 161:199–206

    PubMed  CAS  Google Scholar 

  • Flett F, Cullum J (1987) DNA deletions in spontaneous chloramphenicol-sensitive mutants ofStreptomyces coelicolor A3(2) andStreptomyces lividans 66. Mol Gen Genet 207:99–502

    Article  Google Scholar 

  • Flett F, Platt J, Cullum J (1987) DNA rearrangements associated with instability of an arginine gene inStreptomyces coelicolor A3(2). J Basic Microbiol 27:3–10

    PubMed  CAS  Google Scholar 

  • Garvey EP, Santi DV (1986) Stable amplified DNA in drug-resistantLeishmania exists as extrachromosomal circles. Science 233:535–540

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Hintermann G, Simonet JM, Crameri R, Piret J, Hütter R (1985) Certain chromosomal regions inStreptomyces glaucescens tend to carry amplifications and deletions. Mol Gen Genet 200:375–384

    Article  PubMed  CAS  Google Scholar 

  • Hintermann G, Crameri R, Kieser T, Hütter R (1981) Restriction analyses of theStreptomyces glaucescens genome by agarose gel electrophoresis. Arch Microbiol 130:218–222

    Article  CAS  Google Scholar 

  • Hintermann G, Crameri R, Vögtli M, Hütter R (1984) Streptomycin-sensitivity inStreptomyces glaucescens is due to deletions comprising the structural gene coding for a specific phosphotransferase. Mol Gen Genet 196:513–520

    Article  PubMed  CAS  Google Scholar 

  • Hintermann G, Zatchej M, Hütter R (1985) Cloning and expression of the genetically unstable tyrosinase structural gene fromStreptomyces glaucescens. Mol Gen Genet 200:422–432

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA (1966) Lack of constant genome ends inStreptomyces coelicolor. Genetics 54:1177–1184

    PubMed  Google Scholar 

  • Hornemann U, Otto DJ, Hoffmann GG, Bertinuson AC (1987) Spectinomycin resistance and associated DNA amplification inStreptomyces achromogenes subsp.rubradiris. J Bacteriol 169:2360–2366

    PubMed  CAS  Google Scholar 

  • Hütter R, Eckhardt T (1988) Genetic manipulation. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in Biotechnology. Academic Press, London, UK, pp 89–184

    Google Scholar 

  • Hütter R, Kieser T, Crameri R, Hintermann G (1981) Chromosomal instability inStreptomyces glaucescens. Zentralbl Bakteriol Suppl 11:551–559

    Google Scholar 

  • Hütter R, Birch A, Häusler A, Vögtli M, Madon J, Krek W (1988) Genome fluidity in Streptomycetes. In: Biology of Actinomycetes ’88. Japan scientific societies press, pp 111–116

  • Kieser T (1984) Factors affecting the isolation of ccc DNA fromStreptomyces lividans andEscherichia coli. Plasmid 12:19–36

    Article  PubMed  CAS  Google Scholar 

  • Kinashi H, Shimaji M, Sakai A (1987) Giant linear plasmids inStreptomyces which code for antibiotic biosynthesis genes. Nature 328:454–456

    Article  PubMed  CAS  Google Scholar 

  • Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Marvo SL, King SR, Jaskunas SR (1983) Role of short regions of homology in intermolecular illegitimate recombination events. Proc Natl Acad Sci USA 80:2452–2456

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321

    PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Murray NE, Brammar WJ, Murray K (1977) Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150:53–61

    Article  PubMed  CAS  Google Scholar 

  • Nakano MM, Ogawara H, Sekiya T (1984) Recombination between short direct repeats inStreptomyces lavendulae plasmid DNA. J Bacteriol 157:658–660

    PubMed  CAS  Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Ono H, Hintermann G, Crameri R, Wallis G, Hütter R (1982) Reiterated DNA sequences in a mutant strain ofStreptomyces glaucescens and cloning of the sequence inEscherichia coli. Mol Gen Genet 186:106–110

    Article  PubMed  CAS  Google Scholar 

  • Orlova VA, Danilenko VN (1983) Multiplication of DNA fragments inStreptomyces antibioticus producing oleandomycin. Antibiotiki 3:163–167

    Google Scholar 

  • Peeters BPH, de Boer JM, Bron S, Venema G (1988) Structural plasmid instability inBacillus subtilis. Effect of direct and inverted repeats. Mol Gen Genet 212:450–458

    Article  PubMed  CAS  Google Scholar 

  • Pridham TG, Anderson P, Foley C, Lindenfelser LA, Benedict RG (1956/57) A selection of media for maintenance and taxonomic study ofStreptomyces. Antibiotic Ann 947–953

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  CAS  Google Scholar 

  • Robinson M, Lewis E, Napier E (1981) Occurrence of reiterated DNA sequences in strains ofStreptomyces produced by an interspecific protoplast fusion. Mol Gen Genet 182:336–340

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schrempf H (1983) Deletion and amplification of DNA sequences in melanin-negative variants ofStreptomyces reticuli. Mol Gen Genet 189:501–505

    Article  PubMed  CAS  Google Scholar 

  • Smith GE, Summers MD (1980) The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl paper. Anal Biochem 109:123–129

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated on agarose gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Spies T, Laufs R (1983) Circularized copies of amplifiable resistance genes fromHaemophilus influenzae plasmids. J Bacteriol 156:1263–1267

    PubMed  CAS  Google Scholar 

  • Stark GR, Wahl GM (1984) Gene amplification. Annu Rev Biochem 53:447–491

    Article  PubMed  CAS  Google Scholar 

  • Vögtli M, Piret J, Hintermann G, Hütter R (1985) Analysis of different mutant strains ofStreptomyces glaucescens on the molecular level by using a genomic library. In: Szabo G, Biro S, Goodfellow M (eds) Biochemical and biomedical aspects of Actinomycetes. Akademiai Kiado, Budapest, pp 67–69

    Google Scholar 

  • Whoriskey SK, Nghiem V-H, Leong P-M, Masson JM, Miller JH (1987) Genetic rearrangements and gene amplification inEscherichia coli. DNA sequences at the junctures of amplified gene fusions. Genes Devel 1:227–237

    PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–109

    Article  PubMed  CAS  Google Scholar 

  • Young M, Cullum J (1987) A plausible mechanism for large scale chromosomal DNA amplification inStreptomyces. FEBS Lett 212:10–14

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häusler, A., Birch, A., Krek, W. et al. Heterogeneous genomic amplification inStreptomyces glaucescens: Structure, location and junction sequence analysis. Molec. Gen. Genet. 217, 437–446 (1989). https://doi.org/10.1007/BF02464915

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464915

Key words

Navigation