Skip to main content
Log in

Regulation of repressor and early gene expression in Mu-like transposable bacteriophage D108

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The temperate, transposable bacteriophages D108 and Mu are highly homologous, but differ in their left-end regulatory regions. We have previously cloned the gene encoding the D108 thermo-sensitive (cts) repressor under the control of thelacUV5 promoter. In this work, we report that crude protein extracts containing highly-expressed D108 repressor protect a 77 bp region of DNA, located between 863 bp and 940 bp from the D108 left-end, from both exonuclease III and DNase I hydrolysis. Nucleotide sequence analysis of this region reveals that it also contains DNA sequences homologous to the consensus DNA-binding site of theEscherichia coli protein, Integration Host Factor (IHF). Crude protein extracts containing highly-expressed IHF specifically bind to, and retard the migration of, DNA fragments containing the D108 regulatory region, and the DNA sequence which IHF protects from DNase I cleavage lies directly within the D108 repressor binding region. There are two apparent repressor-specific S1 nuclease-resistant RNAs observed during the lysogenic and lytic states. A single S1 nuclease-resistant RNA suggests that transcription from the early region promoter, Pe, may initiate at or about 1000 bp from the left-end of the D108 genome. Thus, though D108 and Mu utilize three analogous proteins (repressor, ner, and IHF) and the same apparent promoters for early gene regulation and the lytic/ lysogenic decision, the organization of these regulatory components is apparently different, suggesting different mechanisms of control of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Craig NL, Nash HA (1984)E. coli integration host factor binds to specific sites in DNA. Cell 39:707–716

    Article  PubMed  CAS  Google Scholar 

  • Craigie R, Mizuuchi H, Mizuuchi K (1984) Site-specific recognition of the bacteriophage Mu ends by the Mu A protein. Cell 39: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Simons RW, Kleckner N (1985) Tn10 protects itself at two levels from fortuitous activation by external promoters. Cell 43: 379–387

    Article  PubMed  CAS  Google Scholar 

  • DuBow MS (1987) Transposable Mu-like phages. In: Symonds N, Toussaint A, van de Putte P, Howe MM (eds) Phage Mu. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 201–213

    Google Scholar 

  • DuBow MS, Bukhari AI (1981) The proteins of bacteriophage Mu: Composition of the virion and biosynthesisin vivo during lytic growth. In: DuBow MS (ed) Bacteriophage assembly. Alan R. Liss, New York, pp 47–67

    Google Scholar 

  • Friden P, Voelkel K, Sternglaz R, Freundlich M (1984) Reduced expression of the isoleucine and valine enzymes in integration host factor mutants ofE. coli. J Mol Biol 172: 484–489

    Google Scholar 

  • Friedman D, Olsen E, Carver D, Gellert M (1984) Synergistic effect ofhimA andgyrB mutations: Evidence that Him functions control expression ofilv andxyl genes. J Bacteriol 157: 484–489

    PubMed  CAS  Google Scholar 

  • Fuller F (1982) A family of cloning vectors containing thelacUV5 promoter. Gene 19: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Galas DJ, Schmitz A (1978) DNasel foot-printing: A simple method for the detection of DNA binding specificity. Nucleic Acids Res 5: 3157–3170

    PubMed  CAS  Google Scholar 

  • Gill GS, Hull RC, Curtiss III RA (1981) Mutator bacteriophage D108 and its DNA: An electron microscopic characterization. J Virol 37: 420–430

    PubMed  CAS  Google Scholar 

  • Goosen N, van de Putte P (1984) Regulation of Mu transposition I. Localization of the presumed recognition sites forhimD andner functions controlling bacteriophage Mu transcription. Gene 30: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Goosen N, van Heuvel M, Moolenaar GF, van de Putte P (1984) Regulation of Mu transposition II. TheEscherichia coli himD protein positively controls two repressor promoters and the early promoter of bacteriophage Mu. Gene 32: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Gough JA, Murray NE (1983) Sequence diversity amoung related genes for recognition of specific targets in DNA molecules. J Mol Biol 166: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Hattman S, (1982) DNA methytransferase-dependant transcription of the phage Mumom gene. Proc Natl Acad Sci USA 79: 5518–5521

    Article  PubMed  CAS  Google Scholar 

  • Hawley D, McClure WR (1983) Compilation and analysis ofEscherichia coli promoter DNA sequences. Nucleic Acids Res 11: 2237–2255

    PubMed  CAS  Google Scholar 

  • Hull RC, Gill RS, Curtis III RA (1978) Genetic characterization of a Mu-like bacteriophage, D108. J Virol 27: 513–518

    PubMed  CAS  Google Scholar 

  • Isberg RR, Lazaar AL, Syvanen M (1982) Regulation of Tn5 by the right-repeat proteins: Control at the level of the transposition reaction? Cell 30: 883–892

    Article  PubMed  CAS  Google Scholar 

  • Krause HM, Higgins NP (1985) On the Mu repressor and early intermediates of DNA transposition. Cold Spring Harbor Symp Quant Biol 50: 827–834

    Google Scholar 

  • Krause HM, Higgins HP (1986) Positive and negative regulation of the Mu operator by Mu repressor andEscherichia coli integration host factor. J Biol Chem 261: 3744–3752

    PubMed  CAS  Google Scholar 

  • Krause HM, Rothwell MR, Higgins NP (1983) The early promoter of bacteriophage Mu: Definition of the site of transcription initiation. Nucleic Acids Res 11: 5483–5495

    PubMed  CAS  Google Scholar 

  • Leong JM, Nune-Duby S, Lesser CF, Youderian P, Susskind MM, and Landy A (1985) The ϕ80 and P22 attachment sites. J Biol Chem 260: 4468–4477

    PubMed  CAS  Google Scholar 

  • Levin DB, DuBow MS (1987) Cloning and localization of the repressor gene (c) of the Mu-like transposable phage D108. FEBS Lett 222: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Magazin M, Reeve NJ, Maynard-Smith S, Symonds N (1978) Bacteriophage Mu encoded polypeptides synthesized in infected cells. FEMS Microbiol Lett 4: 5–9

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) In: Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labelled DNA with base-specific chemical cleavage reactions. Methods Enzymol 65: 499–560

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) In: Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Miller HI, Friedman DI (1980) AE. coli gene product required for λ site-specific recombination. Cell 20: 711–719

    Article  PubMed  CAS  Google Scholar 

  • Miller HI, Kirk M, Echols H (1981) SOS induction and autoregulation of thehimA gene for site-specific recombination inEscherichia coli. Proc Natl Acad Sci USA 78:6754–6760

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi M, Weisberg RA, Mizuuchi K (1986) DNA sequence of the control region of phage D108: The N-terminal amino acid sequences of repressor are similar both in phage D108 and in its relative, phage Mu. Nucleic Acids Res 14: 3813–3825

    PubMed  CAS  Google Scholar 

  • Nash HA, (1981) Integration and excision of bacteriophage λ: The mechanism of conservative site-specific recombination. Annu Rev Genet 15: 143–167

    Article  PubMed  CAS  Google Scholar 

  • Nash HA, Robertson CA, Flamm E, Weisberg RA, Miller HI (1987) Production ofE. coli integration host factor, a protein with non-identical subunits. J Bacteriol 169: 4124–4127

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Arcangioli B, Guarente L (1987) Yeasthap1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of thecyc1 gene. Cell 49: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Priess H, Kamp D, Kahmann R, Brauer B, Delius H (1982) Nucleotide sequence of the immunity region of bacteriophage Mu. Mol Gen Genet 186: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Roberts D, Hoopes C, McClure WR, Kleckner N (1985) Tn10 transposition is regulated by DNA adenine methylation. Cell 43: 117–130

    Article  PubMed  CAS  Google Scholar 

  • Ross W, Shore SH, Howe MM (1986) Mutants ofEscherichia coli defective for replicative transposition of bacteriophage Mu. J Bacteriol 167: 905–919

    PubMed  CAS  Google Scholar 

  • Schneider TD, Stormo GD, Gold L, Ehrenfeucht A (1986) Information content of binding sites on nucleotide sequences. J Mol Biol 188: 415–431

    Article  PubMed  CAS  Google Scholar 

  • Shinder G, Tourjman S, DuBow MS (1984) Bacteriophage Mu transposition as a tool to identify new classes of genotoxic agents. In: Liu D, Dutka BJ (eds) Toxicity screening procedures using bacterial systems. Marcel Dekker, New York, pp 295–308

    Google Scholar 

  • Strauss F, Varshavsky A (1984) A protein binds to a satellite DNA repeat at three specific sites that would be brought into proximity by DNA folding in the nucleosome. Cell 37: 889–901

    Article  PubMed  CAS  Google Scholar 

  • Symonds N, Toussaint A, van de Putte P Howe MM (1987) In: Phage Mu. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Szatmari GB, Kahn JS, DuBow MS (1986) Orientation and sequence analysis of right-ends and target sites of bacteriophage Mu and D108 insertions in the plasmid pSC101. Gene 41: 314–319

    Article  Google Scholar 

  • Taylor AL (1963) Bacteriophage-induced mutations inEscherichia coli. Proc Natl Acad Sci USA 50: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Tolias PP, DuBow MS (1985) The cloning and characterization of the bacteriophage D108 regulatory DNA-binding protein ner. EMBO J 4: 3031–3037

    PubMed  CAS  Google Scholar 

  • Tolias PP, DuBow MS (1986) The over-production and characterization of the bacteriophage Mu regulatory DNA-binding protein ner. Virology 148: 298–311

    Article  PubMed  CAS  Google Scholar 

  • Waggoner BT, Pato ML (1978) Early events in the replication of Mu prophage DNA. J Virol 27: 587–594

    PubMed  CAS  Google Scholar 

  • Weisberg RA, Landy A (1983) Site-specific recombination in phage lambda. In: Roberts J, Stahl F, Weisberg R (eds) Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 221–250

    Google Scholar 

  • Weiss B (1976) Exonuclease II ofEscherichia coli is exonuclease III. J Biol Chem 251: 1896–1902

    PubMed  CAS  Google Scholar 

  • Wijffelman C, Lotterman B (1977) Kinetics of Mu DNA synthesis. Mol Gen Genet 151: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Wijffelman C, Gassler M, Stevens WF, van de Putte P (1974) On the control of transcription of bacteriophage Mu. Mol Gen Genet 131: 85–96

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1985) An exonuclease III protection assay reveals heat-shock element and TATA-box DNA-binding proteins in crude extracts. Nature 317: 84–85

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.Y. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, D.B., DuBow, M.S. Regulation of repressor and early gene expression in Mu-like transposable bacteriophage D108. Molec. Gen. Genet. 217, 392–400 (1989). https://doi.org/10.1007/BF02464909

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464909

Key words

Navigation