Molecular and General Genetics MGG

, Volume 217, Issue 2–3, pp 384–391 | Cite as

Secretory expression inEscherichia coli andBacillus subtilis of human interferon α genes directed by staphylokinase signals

  • Reinhard Breitling
  • Dieter Gerlach
  • Manfred Hartmann
  • Detlev Behnke


A DNA segment covering the signal sequence coding region, the ribosome binding site, and the promoter of the staphylokinase (sak) 42D gene (Behnke and Gerlach 1987) was cloned into pUC19 to form a portable expression-secretion unit (ESU). Fusion of human interferon α1 (hIFNα1) and hybrid hIFNα1/2 genes to thissak ESU resulted in secretory expression of the two gene products in bothEscherichia coli andBacillus subtilis. While most of the IFNα was exported to the periplasmic space ofE. coli, about 99% was secreted to the culture medium by recombinantB. subtilis strains. The total yield inE. coli was 1.2×105 IU/ml. This level of expression and export led to instability of the recombinant strains that was spontaneously relieved in vivo by inactivation of thesak ESU through insertion of an IS1 element. No such instability was observed withB. subtilis although expression and secretion levels reached even 3×106 IU/ml. Proteolytic degradation of IFNα by extracellular proteases was avoided by a combination of constitutive expression and secretion during the logarithmic growth phase and the use of exoprotease-reduced host strains. The IFNα1 protein purified fromB. subtilis culture supernatant was correctly processed, carried the expected 11 amino acid N-terminal elongation that resulted from DNA manipulations and proved to be homogenous in Western blotting experiments. The same recombinant plasmid that directed efficient secretion of hIFNα1 inB. subtilis gave poor yields when introduced intoStreptococcus sanguis.

Key words

Cloning Heterologous gene expression Protein secretion Streptococcus sanguis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avakov AS, Tshernovskaya TV, Bidnenko VE, Abalakina EG, Joimantas JV, Sorokin AV, Jeremashvili MR, Strongin AJ, Sokolov AK, Kozlov JI, Stepanov AI, Debabov VG (1986) Interferon secreted byBacillus subtilis is retained at the membrane. Dokl Akad Nauk SSSR 288:717–721PubMedGoogle Scholar
  2. Band L, Henner DJ (1984)Bacillus subtilis requires a “stringent” Shine-Dalgarno region for gene expression. DNA 3:17–21PubMedGoogle Scholar
  3. Behnke D (1981) Plasmid transformation ofStreptococcus sanguis (Challis) occurs by circular and linear molecules. Mol Gen Genet 182:490–497PubMedCrossRefGoogle Scholar
  4. Behnke D, Ferretti JJ (1980) Physical mapping of plasmid pDB101 — a potential vector plasmid for molecular cloning in streptococci. Plasmid 4:130–138PubMedCrossRefGoogle Scholar
  5. Behnke D, Gerlach D (1987) Cloning and expression inEscherichia coli, Bacillus subtilis, andStreptococcus sanguis of a gene for staphylokinase — a bacterial plasminogen activator. Mol Gen Genet 210:528–534PubMedCrossRefGoogle Scholar
  6. Behnke D, Gilmore MS (1981) Location of antibiotic resistance determinants, copy control, and replication functions on the double-selective streptococcal cloning vector pGB301. Mol Gen Genet 184:115–120PubMedCrossRefGoogle Scholar
  7. Behnke D, Tomich PK, Clewell DB (1980) Electron microscopic mapping of deletions on a Streptococcal Plasmid carrying extraordinarily long inverted repeats. Plasmid 4:139–147PubMedCrossRefGoogle Scholar
  8. Benson SA, Hall MN, Silhavy TJ (1985) Genetic analysis of protein export inEscherichia coli K12. Annu Rev Biochem 54:101–134PubMedCrossRefGoogle Scholar
  9. Bishai WR, Rappuoli R, Murphy JR (1987) High-level expression of a proteolytically sensitive diphtheria toxin fragment inEscherichia coli. J Bacteriol 169:5140–5151PubMedGoogle Scholar
  10. Carter P, Bedouelle U, Winter G (1985) Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13:4431–4443PubMedGoogle Scholar
  11. Chang S, Ho D, Gray O, Chang S-Y, McLaughlin J (1983) Functional expression of human interferon genes and construction of a partition-proficient vector inBacillus subtilis. In: Ikeda Y, Beppu T (eds) Genetics of Industrial Microorganisms. Kodansha, Tokyo, pp 227–231Google Scholar
  12. Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence ofE. coli cells. Gene 6:23–28PubMedCrossRefGoogle Scholar
  13. Dubnau D, Davidoff-Abelson R (1971) Fate of transforming DNA following uptake by competentBacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol 56:209–221PubMedCrossRefGoogle Scholar
  14. Fahnestock SR, Fisher KE (1987) Protease-deficientBacillus subtilis host strains for production of staphylococcal protein A. Appl Environ Microbiol 53:379–384PubMedGoogle Scholar
  15. Gamas P, Chandler MG, Prentki P, Galas DJ (1987)Escheichia coli integration host factor binds specifically to the ends of the insertion sequence IS1 and to its major insertion hot-spot in pBR322. J Mol Biol 195:261–272PubMedCrossRefGoogle Scholar
  16. Gerlach D, Kraft R, Behnke D (1988) Purification and characterization of the bacterial plasminogen activator staphylokinase secreted by a recombinantBacillus subtilis. Zentralbl Bakteriol Mikrobiol Hyg Abt I Orig, in pressGoogle Scholar
  17. Goldfard DS, Rodriguez RL, Doi RH (1982) Translational block to expression of theEscherichia coli Tn9-derived chloramphenicol-resistance gene inBacillus subtilis Proc Natl Acad Sci USA 79:5886–5890CrossRefGoogle Scholar
  18. Himeno T, Imanaka T, Aiba S (1986) Protein secretion inBacillus subtilis as influenced by the combination of signal sequence and the following mature protion. FEMS Microbiol Lett 35:17–21CrossRefGoogle Scholar
  19. Honjo M, Akaoka A, Nakayama A, Shimada H, Mita I, Kawamura K, Furutani Y (1986) Construction of secretion vector and secretion of hIFN-β. In: Ganesan AT, Hoch JA (eds) Bacillus Molecular Genetics and Biotechnology Applications. Academic Press, New York, pp 89–100Google Scholar
  20. Honjo M, Nakayama A, Shimada H, Iio A, Mita I, Kawamura K, Furutani Y (1988) Construction of an efficient secretion host-vector system inBacillus subtilis. In: Ganesan AT, Hoch JA (eds) Genetics and Biotechnology of Bacilli. Academic Press, New York, pp 365–369Google Scholar
  21. Kato C, Kobayashi T, Kudo T, Furusato T, Murakami Y, Tanaka T, Buba H, Oishi T, Ohtsuka E, Ikehara M, Yanagida T, Kato H, Moriyama S, Horikoshi K, (1987) Construction of an excretion vector and extracellular production of human growth hormone fromEscherichia coli. Gene 54:197–202PubMedCrossRefGoogle Scholar
  22. Kawamura F, Doi RH (1984) Construction of aBacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol 160:442–444PubMedGoogle Scholar
  23. King RM, Burke DC, Northrop F, Secher DS (1983) Characterization and properties of a modified human interferon α containing an additional 18 amino acids at the N-terminus. J Gen Virol 64:1815–1818PubMedCrossRefGoogle Scholar
  24. Kobayashi T, Kato T, Kudo T, Horikoshi K (1986) Excretion of the penicillinase of an alkalophilicBacillus sp. through theEscherichia coli outer membrane is caused by insertional activation of the kil gene in plasmid pMB9. J Bacteriol 166:728–732PubMedGoogle Scholar
  25. Mackman N, Baker K, Gray L, Haigh R, Nicaud J-M, Holland IB (1987) Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J 6:2835–2841PubMedGoogle Scholar
  26. Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  27. Miyake T, Oka T, Nishizawa T, Misoka F, Fuwa T, Yoda K, Yamasaki M, Tamura G (1985) Secretion of human interferon-α induced by using secretion vectors containing a promoter and signal sequence of alkaline phosphatase gene ofEscherichia coli. J Biochem 97:1429–1436PubMedGoogle Scholar
  28. Moks T, Abrahmsen L, Österlöf B, Josephson S, Östling M, Enfors SO, Persson I, Nilsson B, Uhlen M (1987) Large-scale affinity purification of human insulin-like growth factor I from culture medium ofEscherichia coli. Biotechnology 5:379–382CrossRefGoogle Scholar
  29. Neu HC, Heppel LA (1965) The release of enzymes fromE. coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692PubMedGoogle Scholar
  30. Oka T, Sakamoto S, Miyoshi K, Fuwa T, Yoda K, Yamasaki M, Tamura G, Miyake T (1985) Synthesis and secretion of human epidermal growth factor byEscherichia coli. Proc Natl Acad Sci USA 82:7212–7216PubMedCrossRefGoogle Scholar
  31. Palva I, Lehtovaara P, Kääriäinen L, Sibakov M, Cantell K, Schein CH, Kashiwagi K, Weissmann C (1983) Secretion of interferon inBacillus subtilis, Gene 22:229–235PubMedCrossRefGoogle Scholar
  32. Rubinstein D, Familetti PC, Pestka S (1981) Convenient assay for interferons. J Virol 37:755–758PubMedGoogle Scholar
  33. Sako T (1985) Overproduction of staphylokinase inEscherichia coli and its characterization. Eur J Biochem 149:557–563PubMedCrossRefGoogle Scholar
  34. Saunders CW, Schmidt BJ, Mallonee RL, Guyer MS (1987) Secretion of human serum albumin fromBacillus subtilis. J Bacteriol 169:2917–2925PubMedGoogle Scholar
  35. Schein CH, Kashiwagi K, Fujisawa A, Weissmann C (1986) Secretion of mature IFN-α2 and accumulation of uncleaved precursor byBacillus subtilis transformed with a hydrid α-amylase signal sequence-IFN-α2 gene. Biotechnology 4:719–725CrossRefGoogle Scholar
  36. Shiroza T, Nakazawa K, Tashiro N, Yamane K, Yanagi K, Yamasaki M, Tamura G, Saito H, Kawade, Y, Taniguchi T (1985) Synthesis and secretion of biologically active mouse interferon-β using aBacillus subtilis α-amylase secretion vector. Gene 34:1–8PubMedCrossRefGoogle Scholar
  37. Sorokin AV, Jomantas JV, Avakov AS, Bogush VG, Gaida GS, Strongin AJ, Koslov JI, Stepanov AI, Debabov VG (1985a) The α-amylase gene — a model for the construction of secretion vectors. Biopolymers Cell 1:41–47 (in Russian)Google Scholar
  38. Sorokin AV, Avakov, AS, Bogush VG, Kostrov SV, Gaida GS, Jomantas JV, Abalakina EG, Stepanov AI, Strongin AJ, Koslov JI, Debabov VG (1985b) Synthesis and processing inEscherichia coli of human leukocyte interferon linked to the signal sequence of α-amylase fromBacillus amyloiquefaciens. Dokl Akad Nauk SSSR 282:1489–1493 (in Russian)Google Scholar
  39. Streuli M, Nagata S, Weissmann C (1980) At least three human type α interferons: structure of α2. Science 209:1343–1347PubMedGoogle Scholar
  40. Tachibana K-I, Yoda K, Watanabe S, Kadokura H, Katayama Y, Yamane K, Yamasaki M, Tamura G (1987) Secretion ofBacillus subtilis α-amylase in the periplasmic space ofEscherichia coli. J Gen Microbiol 133:1775–1782PubMedGoogle Scholar
  41. Tonew M, Glück B (1986) Interferonsensivität verschiedener Zellkulturen. J Basic Microbiol 26:172–189Google Scholar
  42. Ulmanen I, Lundström K, Lehtovaara P, Sarvas, M, Ruohonen M, Palva I (1985) Transcription and translation of foreign genes inBacillus subtilis by the aid of a secretion vector. J Bacteriol 162:178–182Google Scholar
  43. Willemot K, Cornelis P (1983) Growth defects ofEscherichia coli cells which contain the gene of an α-amylase fromBacillus coagulans on a multicopy plasmid. J Gen Microbiol 129:311–319PubMedGoogle Scholar
  44. Wong SL, Kawamura F, Doi RH (1986) Use of theBacillus subtilis subtilisin signal peptide for efficient secretion of TEM beta-lactamase during growth. J Bacteriol 168:1005–1009PubMedGoogle Scholar
  45. Yang MY, Ferrari E, Henner DJ (1984) Cloming of the neutral protease gene ofBacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J Bacteriol 160:15–21PubMedGoogle Scholar
  46. Yanish-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Reinhard Breitling
    • 1
  • Dieter Gerlach
    • 1
  • Manfred Hartmann
    • 1
  • Detlev Behnke
    • 1
  1. 1.Zentralinstitut für Mikrobiologie und Experimentelle TherapieAkademie der Wissenschaften der DDRJena

Personalised recommendations