Molecular and General Genetics MGG

, Volume 217, Issue 2–3, pp 309–316 | Cite as

DNA transfer fromAgrobacterium toZea mays orBrassica by agroinfection is dependent on bacterial virulence functions

  • Nigel Grimsley
  • Barbara Hohn
  • Cynthia Ramos
  • Clarence Kado
  • Peter Rogowsky


DNA transfer fromAgrobacterium tumefaciens, a soil bacterium, to the non-host graminaceous monocotyledonous plantZea mays, was analysed using the recently developed technique of agroinfection. Agroinfection ofZ. mays with maize streak virus using strains ofA. tumefaciens carrying mutations in the pTiC58 virulence region showed an almost absolute dependence on the products of the bacterialvirC genes. In contrast, agroinfection of the control hostBrassica rapa with cauliflower mosaic virus was less dependent on thevirC gene products. In other respects, the basic mechanism of the plant-bacterium interaction was found to be similar. While intactvirA, B, D and G functions were absolutely necessary, mutants invirE were attenuated. Agroinfection of maize was effective in the absence of an exogenously suppliedvir gene inducer, and indeed woundedZ. mays tissues were found to produce substance(s) which induced the expression ofA. tumefaciens vir genes. These findings are discussed in the light of current knowledge about the function ofAgrobacterium vir genes.

Key words

Cauliflower mosaic virus Crown gall Maize streak virus Plant transformation Ti-plasmid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bevan M (1984) BinaryAgrobacterium vectors for plant transfor-mation. Nucleic Acids Res 12:8711–8721PubMedGoogle Scholar
  2. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA inEscherichia coli. J Mol Biol 41:459–472PubMedCrossRefGoogle Scholar
  3. Bytebier B, Deboeck F, Greve HD, Montagu MV, Hernalsteens JP (1987) T-DNA organisation in tumour cultures and transgenic plants of the monocotyledonAsparagus officinalis. Proc Natl Acad Sci USA 84:5345–5349PubMedCrossRefGoogle Scholar
  4. Christie PJ, Ward JE, Winans SC, Nester EW (1988) TheAgrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170:2659–2667PubMedGoogle Scholar
  5. Citovsky V, de Vos G, Zambryski P (1988). Single-stranded DNA-binding protein encoded by thevirE locus ofAgrobacterium tumefaciens. Science 240:501–504PubMedGoogle Scholar
  6. Close TJ, Tait RC, Kado CI (1985) Regulation of Ti plasmid virulence genes by a chromosomal locus ofAgrobacterium tumefaciens. J Bacteriol 164:774–781PubMedGoogle Scholar
  7. Close TJ, Tait RC, Rempel HC, Hirooka T, Kim L, Kado CI (1987a) Molecular characterization of thevirC Genes of the Ti plasmid. J Bacteriol 169:2336–2344PubMedGoogle Scholar
  8. Close TJ, Rogowsky PM, Kado CI, Winans SC, Yanofsky MF, Nester EW (1987b) Dual control ofAgrobacterium tumefaciens Ti plasmid virulence genes. J Bacteriol 169: 5113–5118PubMedGoogle Scholar
  9. Culianez-Macia FA, Hepburn AG (1988) Right-border sequences enable the left border of anAgrobacterium tumefaciens nopaline Ti-plasmid to produce single-stranded DNA. Plant Mol Biol 11:389–399CrossRefGoogle Scholar
  10. Dandekar AM, Pramod KG, Durzan DJ, Knauf V (1987) Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Bio/technology 5:587–590CrossRefGoogle Scholar
  11. Das A (1988)Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc Natl Acad Sci USA 85:2909–2913PubMedCrossRefGoogle Scholar
  12. DeCleene M, DeLey J (1976) The host range of Crown Gall. Bot Rev 4:389–466Google Scholar
  13. DeCleene M (1985) The susceptibility of monocotyledons toAgrobacterium tumefaciens. Phytopath Z 113:81–89Google Scholar
  14. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank ofRhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351PubMedCrossRefGoogle Scholar
  15. Elmer JS, Sunter G, Gardiner WE, Brand L, Browning CK, Bisaro DM, Rogers SG (1988)Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol Biol 10:225–234CrossRefGoogle Scholar
  16. Fry J, Barnason A, Horsch RB (1987) Transformation ofBrassica napus withAgrobacterium tumefaciens based vectors. Plant Cell Reports 6:321–325CrossRefGoogle Scholar
  17. Gardner R, Knauf V (1986) Transfer ofAgrobacterium DNA to plants requires a T-DNA border but not thevirE locus. Science 231:725–727PubMedGoogle Scholar
  18. Gietl C, Koukolíková-Nicola Z, Hohn B (1987) Mobilization of T-DNA fromAgrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84:9006–9010PubMedCrossRefGoogle Scholar
  19. Graves ACF, Goldman SL (1987)Agrobacterium tumefaciens mediated transformation of the monocot genusGladiolus: Detection of expression of T-DNA-encoded genes. J Bacteriol 169:1745–1746PubMedGoogle Scholar
  20. Graves AE, Goldman SL, Banks SW, Graves ACF (1988) Scanning electron microscope studies ofAgrobacterium tumefaciens attachment toZea mays, Gladiolus sp., andTriticum aestivum. J Bacteriol 170:2395–2400PubMedGoogle Scholar
  21. Grimsley N, Bisaro D (1987) Agroinfection. In: Schell J, Hohn T (eds) Plant DNA infectious agents. Plant gene research. Springer, New York and Vienna, pp 87–107Google Scholar
  22. Grimsley N, Hohn B, Hohn T, Walden R (1986a) Agroinfection, an, alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83:3282–3286PubMedCrossRefGoogle Scholar
  23. Grimsley N, Hohn T, Hohn B (1986b) Recombination in a plant virus: template-switching in cauliflower mosaic virus. EMBO J 5: 641–646PubMedGoogle Scholar
  24. Grimsley N, Hohn T, Davies JW, Hohn B (1987)Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179CrossRefGoogle Scholar
  25. Grimsley N, Ramos C, Hein T, Hohn B (1988) Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Bio/technology 6:185–189CrossRefGoogle Scholar
  26. Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557–580PubMedGoogle Scholar
  27. Hariyama T, Muranaka T, Ohkawa H, Oka A (1988) Organization and characterization of thevirCD genes fromAgrobacterium rhizogenes. Mol Gen Genet 213:229–237CrossRefGoogle Scholar
  28. Hernalsteens JP, Thia-Toong L, Schell J, Van Montagu M (1984) AnAgrobacterium-transformed cell culture from the monocotAsparagus officinalis. EMBO J 3:3039–3041PubMedGoogle Scholar
  29. Hille J, Dekker M, Luttighuis H, Van Kammen A, Zabel P (1986) Detection of T-DNA transfer to plant cells byAgrobacterium tumefaciens virulence mutants using agroinfection. Mol Gen Genet 205:411–416CrossRefGoogle Scholar
  30. Hirooka T, Kado CI (1986) Location of the right boundary of the virulence region onAgrobacterium tumefaciens plasmid pTiC58 and a host-specifying gene next to the boundary. J Bacteriol 168:237–243PubMedGoogle Scholar
  31. Hirooka T, Rogowsky PM, Kado CI (1987) Characterization of thevirE locus ofAgrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:1529–1536PubMedGoogle Scholar
  32. Hohn B, Koukolíková-Nicola Z, Bakkeren G, Grimsley N (1988) Genome (in press)Google Scholar
  33. Holbrook LA, Miki BL (1985)Brassica crown gall tumorigenesis and in vitro of transformed tissue. Plant Cell Reports 4:329–332CrossRefGoogle Scholar
  34. Hooykaas PJJ, Hofker M, Den Dulk-Ras H, Schilperoort RA (1984) A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid and an Ri plasmid by complementation analysis ofAgrobacterium tumefaciens mutants. Plasmid 11:195–205PubMedCrossRefGoogle Scholar
  35. Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expression of Ti plasmid genes in monocotyledonous plants infected withAgrobacterium tumefaciens. Nature 311:763–764CrossRefGoogle Scholar
  36. Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis ofAgrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad Sci USA 83:2571–2575PubMedCrossRefGoogle Scholar
  37. Iyer VN, Klee HJ, Nester EW (1982) Units of genetic expression in the virulence region of a plant tumor-inducing plasmid ofAgrobacterium tumefaciens. Mol Gen Genet 188:418–424PubMedCrossRefGoogle Scholar
  38. Klapwijk PM, Van Beelen P, Schilperoort RA (1979) Isolation of a recombination deficientAgrobacterium tumefaciens mutant. Mol Gen Genet 173:171–175PubMedCrossRefGoogle Scholar
  39. Koukolíková-Nicola Z, Albright L, Hohn B (1987) The mechanism of T-DNA transfer fromAgrobacterium tumefaciens to the plant cell. In: Schell J, Hohn T (eds) Plant DNA infectious agents. Plant gene research. Springer, New York and Vienna, pp 109–148Google Scholar
  40. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  41. Melchers LS, Hooykaas PJJ (1987) Virulence ofAgrobacterium. Oxford Surveys Plant Mol Cell Biol 4:167–220Google Scholar
  42. Miller (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  43. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  44. Peralta EG, Hellmiss R, Ream W (1986) Overdrive, a T-DNA transmission enhancer on theA. tumefaciens tumour-inducing plasmid. EMBO J 5:1137–1142PubMedGoogle Scholar
  45. Pua E-C, Mehra-Palta A, Nagy F, Chua N-H (1987) Transgenic plants ofBrassica napus L Bio/technology 5:815–817CrossRefGoogle Scholar
  46. Rogers SG, Klee H (1987) Pathways to plant genetic manipulation employingAgrobacterium. In: Schell J, Hohn T (eds) Plant DNA infectious agents. Plant gene research. Springer, New York and Vienna, pp 179–203Google Scholar
  47. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of thevir genes ofAgrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112PubMedGoogle Scholar
  48. Schäfer W, Görz A, Kahl G (1987) T-DNA integration and expression in a monocot crop plant after induction ofAgrobacterium. Nature 327:529–532CrossRefGoogle Scholar
  49. Sederoff R, Stomp A-M, Chilton WS, Moore LW (1986) Gene transfer into Loblolly Pine byAgrobacterium tumefaciens. Bio/technology 4:647–649CrossRefGoogle Scholar
  50. Stachel SE, Nester EW (1986) The genetic and transcriptional organization of thevir region of the A6 Ti plasmid ofAgrobacterium tumefaciens. EMBO J 5:1445–1454PubMedGoogle Scholar
  51. Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer inAgrobacterium tumefaciens. Nature 318:624–629CrossRefGoogle Scholar
  52. Suseelan KN, Bhagwat A, Mathews H, Bhatia CR (1987)Agrobacterium tumefaciens, induces tumour formation on some tropical dicot and monocot, plants. Curr Sci 56:888–889Google Scholar
  53. Tait RC, Kado CI (1988) Regulation of thevirC andvirD promoters of pTiC58 by theros chromosomal mutation ofAgrobacterium tumefaciens. Mol Microbiol 2:385–392PubMedGoogle Scholar
  54. Toro N, Datta A, Yanofsky M, Nester E (1988) Role of the over-drive sequence in T-DNA border cleavage inAgrobacterium. Proc Natl Acad Sci USA 85:8558–8562PubMedCrossRefGoogle Scholar
  55. Usami S, Okamoto S, Takebe I, Machida Y (1988) Factor inducingAgrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc Natl Acad Sci USA 85:3748–3752PubMedCrossRefGoogle Scholar
  56. Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid ofAgrobacterium tumefaciens. J Bacteriol 170:1523–1532PubMedGoogle Scholar
  57. Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1974) Characterization of different plaque forming and defective temperature phages inAgrobacterium strains. J Gen Virol 26:33–48CrossRefGoogle Scholar
  58. Woolston CJ, Barker R, Gunn H, Boulton MI, Mullineaux PM (1988) Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol Biol 11:35–43CrossRefGoogle Scholar
  59. Yamamoto A, Iwahashi M, Yanofsky MF, Nester EW, Takebe I, Machida Y (1987) The promoter proximal region in thevirD locus ofAgrobacterium tumefaciens is necessary for the plant inducible circularization of T-DNA. Mol Gen Genet 206:174–177PubMedCrossRefGoogle Scholar
  60. Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon M, Nester E (1985) Molecular and genetic analysis of factors controlling host range inAgrobacterium tumefaciens. Mol Gen Genet 201:237–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Nigel Grimsley
    • 1
  • Barbara Hohn
    • 1
  • Cynthia Ramos
    • 1
  • Clarence Kado
    • 2
  • Peter Rogowsky
    • 2
  1. 1.Friedrich Miescher-InstitutBaselSwitzerland
  2. 2.Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations