Advertisement

Molecular and General Genetics MGG

, Volume 217, Issue 2–3, pp 202–208 | Cite as

On the evolution of Tn21-like multiresistance transposons: Sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn21-based expression cassette

  • Wolfgang Wohlleben
  • Walter Arnold
  • Luc Bissonnette
  • Alex Pelletier
  • Annie Tanguay
  • Paul H. Roy
  • Gary C. Gamboa
  • Gerard F. Barry
  • Elisabeth Aubert
  • Julian Davies
  • Sarah A. Kagan
Article

Summary

The aminoglycoside-3-O-acetyltransferase-I gene (aacC1) from R plasmids of two incompatibility groups (R1033 [Tn1696], and R135) was cloned and sequenced. In the case of R1033, it was shown that theaacC gene is coded by a precise insertion of 833 bp between theaadA promoter and its structural gene in a Tn21 related transposon (Tn1696). This insertion occurs at the same target sequence as that of the OXA-1 β-lactamase gene insertion in Tn2603. Upstream of theaacC gene, we found an open reading frame (ORF) which is probably implicated in the site-specific recombinational events involved in the evolution of this family of genetic elements. These results provide additional confirmation of the role of Tn21 elements as naturally occurring interspecific transposition and expression casssettes.

Key words

Antibiotic resistance Gentamicin acetyltransferase aacC nucleotide sequence Transposon Tn21 Plasmid evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmansberger R, Bräu B, Piepersberg W (1985) Genes for gentamicin-(3)-N-acetyl-transferases III and IV: II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. Mol Gen Genet 198:514–520PubMedCrossRefGoogle Scholar
  2. Bräu B, Pilz U, Piepersberg W (1984) Genes for gentamicin-(3)-N-acetyltransferases III and IV. I. Nucleotide sequence of the AAC(3)-IV gene and possible involvement of an IS140 element in its expression. Mol Gen Genet 193:179–187PubMedCrossRefGoogle Scholar
  3. Brzezniska M, Benveniste R, Davies J, Daniels PJL, Weinstein J (1972) Gentamicin resistance in strains ofPseudomonas aeruginosa mediated by enzymatic N-acetylation of the 2-deoxystreptamine moiety. Biochemistry 11:761–766CrossRefGoogle Scholar
  4. Cameron FH, Groot Obbink DJ., Ackerman VP, Hall RM (1986) Nucleotide sequence of the AAD(2″) aminoglycoside adenylyltransferase determinantaadB. Evolutionary relationship of this region with those surroundingaadA in R538-1 anddhfrII in R388. Nucleic Acids Res 14:8625–8635PubMedGoogle Scholar
  5. Chinault AC, Blakesley VA, Roessler E, Willis DG, Smith CA, Cook RG, Fenwick RG jr (1986) Characterisation of transferable plasmids fromShigella flexneri 2a that confer resistance to trimethoprim, streptomycin, and sulfonamides. Plasmid 15:119–131PubMedCrossRefGoogle Scholar
  6. Davies J (1986a) A new look at antibiotic resistance. FEMS Microbiol Revs 39:363–371CrossRefGoogle Scholar
  7. Davies JE (1986b) Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes. In: Antibiotics in laboratory medicine, Second edition. Williams & Wilkins, Baltimore, pp 790–809Google Scholar
  8. Davies J, Smith DI (1978) Plasmid determined resistance to antimicrobial agents. Annu Rev Microbiol 32:469–518PubMedCrossRefGoogle Scholar
  9. De la Cruz F, Grinsted J (1982) Genetic and molecular characterisation of Tn21, a multiple resistance transposon from R100-1. J Bacteriol 151:222–228PubMedGoogle Scholar
  10. Dowding J, Davies J (1975) Mechanisms and origins of plasmid-determined antibiotic resistance. Microbiology 1974. American Soc Microbiol, Washington DC, pp 179–186Google Scholar
  11. Flensburg J, Steen R (1986) Nucleotide sequence analysis of the trimethoprim resistant dihydrofolate reductase encoded by R plasmid R751. Nucleic Acids Res 14:5933PubMedGoogle Scholar
  12. Fling ME, Kopf J, Richards C (1985) Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3″(9)-O-nucleotidyltransferase. Nucleic Acids Res 13:7095–7106PubMedGoogle Scholar
  13. Haas MJ, Dowding JE (1975) Aminoglycoside-modifying enzymes. Methods Enzymol 43:611–640PubMedCrossRefGoogle Scholar
  14. Hall RM, Vockler C (1987) The region of the IncN plasmid R46 coding for resistance to β-lactam antibiotics, streptomycin/spectinomycin and sulphonamides is closely related to antibiotic resistance segments found in IncW plasmids and in Tn21-like transposons. Nucleic Acids Res 15:7491–7501PubMedGoogle Scholar
  15. Hirsch PR, Beringer JE (1984) A physical map of pPH1J1 and pJB4J1. Plasmid 12:139–141PubMedCrossRefGoogle Scholar
  16. Hirsch PR, Wang CL, Woodward MJ (1986) Construction of a Tn5 derivative determining resistance to gentamicin and spectinomycin using a fragment cloned from R1033. Gene 48:203–209PubMedCrossRefGoogle Scholar
  17. Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid 13:17–30PubMedCrossRefGoogle Scholar
  18. Hsiang MW, White TJ, Davies JE (1978) NH2-terminal sequence of the aminoglycoside acetyltransferase (3)-I mediated by plasmid RIP135. FEBS Lett 92:97–99PubMedCrossRefGoogle Scholar
  19. Huovinen P, Huovinen S, Jacoby GA (1988) Sequence of PSE-2 β-lactamase. Antimicrob Agents Chemother 32:134–136PubMedGoogle Scholar
  20. Kagan SA (1981) Aminoglycoside acetyltransferase-3-I; structure and function. Ph.D. Thesis, University of WisconsinGoogle Scholar
  21. Kagan SA, Davies JE (1980) Enzymatic modification of aminoglycoside antibiotics: mutations affecting the expression of aminoglycoside acetyltransferase-3. Plasmid 3:312–318PubMedCrossRefGoogle Scholar
  22. Lafond M, Couture F, Vezina G, Levesque RC (1989) DNA homology, structural features and evolutionary perspectives of multiresistance complex β-lactamase transposons. (In press)Google Scholar
  23. LeGoffic F, Moreau N (1973) Purification by affinity chromatography of an enzyme involved in gentamicin inactivation. FEBS Lett 29:289–291CrossRefGoogle Scholar
  24. LeGoffic F, Martel A, Witchitz J (1974) 3-N-enzymatic acetylation of gentamicin, tobramycin and kanamycin byEscherichia coli carrying an R-factor. Antimicrob Agents Chemother 6:680–684Google Scholar
  25. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning. Cold Spring Harbor LaboratoryGoogle Scholar
  26. Marti KM (1987) Kinetic characterisation of aminoglycoside acetyltransferase 3-1. Ph.D. Thesis, University of WisconsinGoogle Scholar
  27. Martinez E, de la Cruz F (1988) Transposon Tn21 encodes arecA-independent site-specific integration system. Mol Gen Genet 211:320–325PubMedCrossRefGoogle Scholar
  28. Mitsuhashi S (1982) Antibacterial activity of aminoglycoside antibiotics. In: Umezawa H, Hooper IR (eds) Aminoglycoside Antibiotics. Springer-Verlag, Berlin, pp 205–220Google Scholar
  29. Ouellette M, Roy PH (1986) Analysis by DNA probes of the OXA-1 β-lactamase gene and its transposon. Antimicrob Agents Chemother 30:46–51PubMedGoogle Scholar
  30. Ouellette M, Roy PH (1987) Homology of ORFs from Tn2603 and from R46 to site-specific recombinases. Nucleic Acids Res 15:10055–10056PubMedGoogle Scholar
  31. Ouellette M, Bissonnette L, Roy PH (1987) Precise insertion of antibiotic resistance determinants into Tn21-like transposons: Nucleotide sequence of the OXA-1 β-lactamase gene. Proc Natl Acad Sci USA 84:7378–7382PubMedCrossRefGoogle Scholar
  32. Piepersberg W, Distler J, Heinzel P, Perez-Gonzalez J-A (1988) Antibiotic resistance by modification: many resistance genes could be derived from cellular control genes in Actinomycetes — a hypothesis. Actinomycetologica, in pressGoogle Scholar
  33. Pratt JM (1984) Coupled transcription-translation in prokaryotic cell-free systems. In: Hames BD, Higgins SJ(eds) Transcription and translation: A practical approach. IRL Press, Oxford, pp 179–209Google Scholar
  34. Rubens CE, McNeill WF, Farrer WE (1979) A transposable plasmid DNA sequence inPseudomonas aeruginosa which mediates resistance to gentamicin and four other antibiotics. J Bacteriol 139:877–882PubMedGoogle Scholar
  35. Rubin RA (1987) Genetic analysis of the gentamicin resistance region of pPH1J1 and incorporation into a wide host range cloning vehicle. Plasmid 18:84–88PubMedCrossRefGoogle Scholar
  36. Schmidt F (1984) The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2″). Mol Gen Genet 194:248–259PubMedCrossRefGoogle Scholar
  37. Schmidt F, Klopfer-Kaul I (1984) Evolutionary relationship between Tn21-like elements and pBP201, a plasmid fromKlebsiella pneumoniae mediating resistance to gentamicin and eight other drugs. Mol Gen Genet 197:109–119PubMedCrossRefGoogle Scholar
  38. Simonsen CC, Chen EY, Levinson AD (1983) Identification of the type I trimethoprim-resistant dihydrofolate reductase specified by theEscherichia coli R-plasmid R483: comparison with procaryotic and eucaryotic dihydrofolate reductases. J Bacteriol 155:1001–1008PubMedGoogle Scholar
  39. Smith DI, Gomez Lus R, Rubio Calvo M, Datta N, Jacob AE, Hedges RW (1975) Third type of plasmid conferring gentamicin resistance inPseudomonas aeruginosa. Antimicrob Agents Chemother 8:227–230PubMedGoogle Scholar
  40. Sundström L, Rådström P, Swedberg G, Sköld O (1988) Site-specific recombination promotes linkage between trimethoprimand sulfonamide resistance genes. Sequence characterization ofdhfrV andsulI and a recombination active locus of Tn21. Mol Gen Genet 213:191–201PubMedCrossRefGoogle Scholar
  41. Swift G, McCarthy BJ, Heffron F (1981) DNA sequence of a plasmid-encoded dihydrofolate reductase. Mol Gen Genet 181:441–447PubMedCrossRefGoogle Scholar
  42. Tait RC, Rempel H, Rodriguez RL, Kado CI (1985) The aminoglycoside resistance operon of the plasmid pSa: Nucleotide sequence of the streptomycin/spectinomycin resistance gene. Gene 36:97–104PubMedCrossRefGoogle Scholar
  43. Tanaka M, Matshushita K, Yamamoto T (1985) Genesis of a complex transposon encoding the OXA-1 (type II) β-lactamase gene. Antimicrob Agents Chemother 28:227–234PubMedGoogle Scholar
  44. Tenover FC, Filpula D, Phillips KL, Plorde JJ (1988) Cloning and sequencing of a gene encoding an aminoglycoside 6′-N-acetyltransferase from an R factor ofCitrobacter diversus. J Bacteriol 170:471–473PubMedGoogle Scholar
  45. Umezawa H, Yagisawa M, Matsuhashi Y, Nagenawa H, Yamamoto H, Kondo S, Takenchi T, Chabbert YA (1973) Gentamicin acetyltransferase inEscherichia coli carrying R factor. J Antibiot 26:612–614PubMedGoogle Scholar
  46. Wiedemann B, Meyer JF, Zuhlsdorf M (1987) Insertions of resistance genes into Tn21-like transposons. J Antimicrob Chemother 18:85–92Google Scholar
  47. Williams JW, Northrop DB (1976) Purification and properties of gentamicin acetyltransferase I. Biochemistry 15:125–131PubMedCrossRefGoogle Scholar
  48. Williams JW, Northrop DB (1978a) Kinetic mechanisms of gentamicin acetyltransferase I. Biol Chem 253:5902–5907Google Scholar
  49. Williams JW, Northrop DB (1978b) Substrate specificity and structure-activity relationships of gentamicin acetyltransferase I. J Biol Chem 253:5908–5914PubMedGoogle Scholar
  50. Witchitz JL (1972) Plasmid-mediated gentamicin resistance not associated with kanamycin resistance in Enterobacteriaceae. J Antibiot 25:622–624PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Wolfgang Wohlleben
    • 1
  • Walter Arnold
    • 1
  • Luc Bissonnette
    • 2
  • Alex Pelletier
    • 2
  • Annie Tanguay
    • 2
  • Paul H. Roy
    • 2
  • Gary C. Gamboa
    • 3
  • Gerard F. Barry
    • 3
  • Elisabeth Aubert
    • 4
  • Julian Davies
    • 4
  • Sarah A. Kagan
    • 4
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Federal Republic of Germany
  2. 2.Université LavalSainte-FoyCanada
  3. 3.Monsanto CompanySt. LouisUSA
  4. 4.Institut PasteurParis, Cedex 15France

Personalised recommendations