Advertisement

Bulletin of Mathematical Biology

, Volume 54, Issue 2–3, pp 355–378 | Cite as

Risk-sensitive foraging: A review of the theory

  • John M. McNamara
  • Alasdair I. Houston
Behavioural Ecology

Keywords

Optimal Policy Energy Reserve Term Survival Prey Model Lifetime Reproductive Success 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Barnard, C. J., C. A. J. Brown, A. I. Houston and J. M. McNamara. 1985. Risk-sensitive foraging in common shrews: an interruption model and the effects of mean and variance in reward rate.Behav. Ecol. Sociobiol. 18, 139–146.CrossRefGoogle Scholar
  2. Caraco, T. 1981. Risk-sensitivity and foraging groups.Ecology 62, 527–531.CrossRefGoogle Scholar
  3. Caraco, T. and M. Chasin. 1984. Foraging preferences: response to reward skew.Anim. Behav. 32, 76–85.CrossRefGoogle Scholar
  4. Caraco, T. and C. Kelly. 1991. On the adaptive value of physiological integration in clonal plants.Ecology 71, 81–93.CrossRefGoogle Scholar
  5. Clark, C. W. 1987. The lazy adaptable lions: a Markovian model of group foraging.Anim. Behav. 35, 361–368.CrossRefGoogle Scholar
  6. Clark, C. W. and M. Mangel. 1984. Foraging and flocking strategies: information in an uncertain environment.Am. Nat. 123, 626–641.CrossRefGoogle Scholar
  7. Clark, C. W. and M. Mangel. 1986. The evolutionary advantages of group foraging.Theor. Popul. Biol. 12, 45–75.MathSciNetCrossRefGoogle Scholar
  8. Charnov, E. L. 1976. Optimal foraging: attack strategy of a mantid.Am. Nat. 110, 141–151.CrossRefGoogle Scholar
  9. Ekman, J. and B. Rosander. 1987. Starvation risk and flock size of the social forager: when there is a flocking cost.Theor. Popul. Biol. 31, 167–177.CrossRefGoogle Scholar
  10. Ellner, S. and L. R. Real. 1989. Optimal foraging models for stochastic environments: Are we missing the point?Comments Theor. Biol. 1, 129–158.Google Scholar
  11. Gantmacher, F. R. 1959.Matrix Theory. New York: Chelsea Publishing Company.Google Scholar
  12. Houston, A. I. and J. M. McNamara. 1982. A sequential approach to risk-taking.Anim. Behav. 30, 1260–1261.CrossRefGoogle Scholar
  13. Houston, A. I. and J. M. McNamara. 1985. The choice of two prey types that minimises the probability of starvation.Behav. Ecol. Sociobiol. 17, 135–141.Google Scholar
  14. Houston, A. I. and J. M. McNamara. 1986. Evaluating the selection pressure on foraging decisions. InRelevance of Models and Theories in Ethology, R. Campan and R. Zayan (Eds), pp. 61–75. Toulouse, France: Privat.Google Scholar
  15. Houston, A. I. and J. M. McNamara. 1990. The effct of environmental variability on growth.Oikos 59, 15–20.Google Scholar
  16. Kennedy, D. P. 1978. On sets of countable non-negative matrices and Markov decision processes.Adv. Appl. Prob. 10, 63–646.CrossRefGoogle Scholar
  17. Mangel, M. and C. W. Clark. 1988.Dynamic Models in Behavioral Ecology. Princeton, New Jersey: Princeton University Press.Google Scholar
  18. McNamara, J. M. 1983. Optimal control of the diffusion coefficient of a simple diffusion process.Math. Oper. Res. 8, 373–380.MATHMathSciNetCrossRefGoogle Scholar
  19. McNamara, J. M. 1984. Control of a diffusion by switching between two drift-diffusion coefficient pairs.SIAM J. Cont. 22, 87–94.MATHMathSciNetCrossRefGoogle Scholar
  20. McNamara, J. M. 1990. The policy which maximizes long-term survival of an animal faced with the risks of starvation and predation.Adv. Appl. Prob. 22, 295–308.MATHMathSciNetCrossRefGoogle Scholar
  21. McNamara, J. M. and A. I. Houston. 1982. Short-term behaviour and life-time fitness. InFunctional Ontogeny, D. J. McFarland (Ed.), pp. 60–87. London: Pitman.Google Scholar
  22. McNamara, J. M. and A. I. Houston. 1986. The common currency for behavioural decisions.Am. Nat. 127, 358–378.CrossRefGoogle Scholar
  23. McNamara, J. M. and A. I. Houston. 1987. A general framework for understanding the effects of variability and interruptions on foraging behaviour.Acta Biotheor. 36, 3–22.CrossRefGoogle Scholar
  24. McNamara, J. M. and A. I. Houston. 1990a. Starvation and predation in a patchy environment. InLiving in a Patchy Environment, B. Shorrocks and I. R. Swingland (Eds), pp. 23–43. Oxford: Oxford University Press.Google Scholar
  25. McNamara, J. M. and A. I. Houston. 1990b. The state-dependent ideal free distribution.Evol. Ecol. 4, 298–311.CrossRefGoogle Scholar
  26. McNamara, J. M., S. Merad and A. I. Houston. 1991. A model of risk-sensitive foraging for a reproducing animal.Anim. Behav. 41, 787–792.CrossRefGoogle Scholar
  27. Merad, S. 1991. Unpublished Ph.D. Thesis. University of Bristol.Google Scholar
  28. Oster, G. F. and E. O. Wilson. 1978.Caste and Ecology in the Social Insects. Princeton, New Jersey: Princeton University Press.Google Scholar
  29. Pulliam, H. R. and G. C. Millikan. 1982. Social organization in the non-reproductive season. InAvian Biology, Vol. 6, D. S. Farmer, J. R. King and K. C. Parkes (Eds), pp. 169–197. New York: Academic Press.Google Scholar
  30. Real, L. A. 1980. Fitness-uncertainty and the role of diversification in evolution and behaviour.Am. Nat. 115, 623–638.MathSciNetCrossRefGoogle Scholar
  31. Real, L. A. and T. Caraco. 1986. Risk and foraging in stochastic environments: theory and evidence.Ann. Rev. Ecol. Syst. 17, 371–390.CrossRefGoogle Scholar
  32. Stephens, D. W. 1981. The logic of risk-sensitive foraging preferences.Anim. Behav. 29, 628–629.CrossRefGoogle Scholar
  33. Stephens, D. W. and J. R. Krebs. 1986.Foraging Theory. Princeton, New Jersey: Princeton University Press.Google Scholar
  34. Sutherland, W. J. and C. W. Anderson. 1987. Six ways in which a foraging predator may encounter options with difference variances.Biol. J. Linn. Soc. 30, 99–114.Google Scholar
  35. Whittle, P. 1983.Optimization over Time, Vol. II. Chichester: Wiley.MATHGoogle Scholar
  36. zabludoff, S. D., J. Wecker and T. Caraco. 1988. Foraging choice in laboratory rats: constant vs. variable delay.Behav. Proc. 16, 95–110.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1991

Authors and Affiliations

  • John M. McNamara
    • 1
  • Alasdair I. Houston
    • 2
  1. 1.School of MathematicsUniversity of BristolBristolU.K.
  2. 2.NERC Unit of Behavioral Ecology, Department of ZoologyUniversity of OxfordOxfordU.K.

Personalised recommendations