Bulletin of Mathematical Biology

, Volume 54, Issue 2–3, pp 313–334 | Cite as

Environmental variability and the persistence of multiple emergence strategies

  • Bart T. De StasioJr
  • Nelson G. HairstonJr
Behavioural Ecology


Studies of plant and animal populations have demonstrated the occurrence of multiple and mixed life history strategies such as polymodal timing of germination and emergence from dormancy. We present the results of a simulation model used to test whether between-year variance in mortality can lead to the persistence of multiple hatching strategies considered over an ecological time scale (50 years). The model is based on the general life history characteristics of a population of planktonic copepods (Diaptomus sanguineus) in Bullhead Pond, Rhode Island. Our model results demonstrate that, given a range of between-year variance in mortality, multiple strategies for timing of emergence can persist in a common environment for ecologically relevant periods of time. A qualitative test of the model comparing field estimates of mean and variance of mortality in Bullhead Pond with the region of persistence indicates that the model results are in approximate agreement with field estimates. The results suggest that variability in year-to-year selection pressures, such as predation or harsh winters, may play an important role in determining the evolution of life histories.


Life History Stage Emergence Strategy Base Survivorship Stable Coexistence Planktonic Copepod 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, A. E., J. S. Gale and M. J. Lawrence. 1973. Variations in wild populations ofPapaver dubium. VII. Germination time.Heredity 30, 189–197.Google Scholar
  2. Bartolome, J. W. 1976. Early rains alter range forage.Calif. Agric. 30, 14–15.Google Scholar
  3. Bartolome, J. W. 1979. Germination and seedling establishment in California annual grassland.J. Ecol. 67, 273–281.CrossRefGoogle Scholar
  4. Baskin, J. M. and C. C. Baskin. 1972. Influence of germination date on survival and seed production in a natural population ofLeavenworthia stylosa.Am. Midl. Nat. 88, 318–323.CrossRefGoogle Scholar
  5. Black, J. N. and G. N. Wilkinson. 1963. The role of time of emergence in determining the growth of individual plants in swards of subterranean clover (Trifolium subterraneum L.).Aust. J. Agric. Res. 14, 628–638.CrossRefGoogle Scholar
  6. Bradshaw, W. E. 1973. Homeostasis and polymorphism in vernal development ofChaoborus americanus.Ecology 54, 1247–1259.CrossRefGoogle Scholar
  7. Braner, M. 1988. Dormancy, dispersal and staged development: ecological and evolutionary aspects of structured populations in random environments. Ph.D. thesis, Cornell University, Ithaca.Google Scholar
  8. Braner, M. and N. G. Hairston Jr. 1989. From cohort data to life table parameters via stochastic modeling. InEstimation and Analysis of Insect Populations, L. McDonald, B. Manly, J. Lockwood and J. Logan (Eds), Vol. 55, pp. 81–92, Lecture Notes in Statistics. Berlin: Springer-Verlag.Google Scholar
  9. Caswell, H. 1978. Predator mediated coexistence: a nonequilibrium model.Am. Nat. 112, 127–154.CrossRefGoogle Scholar
  10. Chesson, P. 1982. The stabilizing effect of a random environment.J. math. Biol. 15, 1–36.zbMATHMathSciNetCrossRefGoogle Scholar
  11. Chesson, P. and N. Huntley. 1989. Short-term instabilities and long-term dynamics.Trends Ecol. Evol. 4, 303–308.CrossRefGoogle Scholar
  12. Cohen, D. 1966. Optimizing reproduction in a randomly varying environment.J. theor. Biol. 12, 119–129.CrossRefGoogle Scholar
  13. Cohen, D. 1968. A general model of optimal reproduction in a randomly varying environment.J. Ecol. 56, 219–228.CrossRefGoogle Scholar
  14. Cohen, D. and S. A. Levin. 1987. The interaction between dispersal and dormancy strategies in varying and heterogeneous environments. InMathematical Topics in Population Biology, Morphogenesis, and Neuroscience, Proceedings from Kyoto, 1985, E. Teramoto and M. Yamaguti (Eds), pp. 110–122. Berlin: Springer-Verlag.Google Scholar
  15. DeAngelis, D. L. and J. C. Waterhouse. 1987. Equilibrium and nonequilibrium concepts in ecological models.Ecol. Monogr. 57, 1–21.CrossRefGoogle Scholar
  16. Dempster, E. R. 1955. Maintenance of genetic heterogeneity.Cold Spring Harbor Symp. Quant. Biol. 20, 25–32.Google Scholar
  17. De Stasio, B. T., Jr. 1989. The seed bank of a freshwater crustacean: copepodology for the plant ecologist.Ecology 70, 1377–1389.CrossRefGoogle Scholar
  18. De Stasio, B. T., Jr. 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community.Limnol. Oceanogr. 35, 1079–1090.Google Scholar
  19. Ellner, S. 1985. ESS germination strategies in randomly varying environments. I. Logistic-type models.Theor. Popul. Biol. 28, 50–79.zbMATHMathSciNetCrossRefGoogle Scholar
  20. Garbutt, K. and J. R. Witcombe. 1986. The inheritance of seed dormancy inSinapsis arvensis L.Heredity 56, 25–31.Google Scholar
  21. Gillespie, J. H. 1973. Natural selection with varying selection coefficients—a haploid model.Genet. Res. 21, 115–120.CrossRefGoogle Scholar
  22. Hairston, N. G., Jr. 1987. Diapause as a predator-avoidance adaptation. InPredation: Direct and Indirect Effects on Aquatic Communities, W. C. Kerfoot and A. Sih (Eds), pp. 281–290. New England University Press.Google Scholar
  23. Hairston, N. G., Jr. 1988. Interannual variation in seasonal predation: Its origin and ecological importance.Limnol. Oceanogr. 33, 1245–1253.CrossRefGoogle Scholar
  24. Hairston, N. G., Jr, W. E. Walton and K. T. Li. 1983. The causes and consequences of sex-specific mortality in a freshwater copepod.Limnol. Oceanogr. 28, 935–947.Google Scholar
  25. Hairston, N. G., Jr and W. R. Munns Jr. 1984. The timing of copoped diapause as an evolutionarily stable strategy.Am. Nat. 123, 733–751.CrossRefGoogle Scholar
  26. Hairston, N. G., Jr and E. J. Olds. 1984. Population differences in the timing of diapause: adaptation in a spatially heterogeneous environment.Oecologia (Berlin)61, 42–48.CrossRefGoogle Scholar
  27. Hairston, N. G., Jr and E. J. Olds. 1986. Partial photoperiodic control of diapause in three populations of the freshwater copepodDiaptomus sanguineus.Biol. Bull. 171, 135–142.Google Scholar
  28. Hairston, N. G., Jr and E. J. Olds. 1987. Population differences in the timing of diapause: a test of hypotheses.Oecologia (Berlin)71, 339–344.CrossRefGoogle Scholar
  29. Hairston, N. G., Jr and B. T. De Stasio, Jr. 1988. Rate of evolution slowed by a dormant propagule pool.Nature (London)336, 239–242.CrossRefGoogle Scholar
  30. Hairston, N. G., Jr, T. Dillon and B. T. De Stasio, Jr. 1990. A field test of the cues of diapause in a freshwater copepod.Ecology 71, 2218–2223.CrossRefGoogle Scholar
  31. Hairston, N. G., Jr. and T. Dillon. 1990. Fluctuating selection and response in a population of freshwater copepods.Evolution 44, 1796–1805.CrossRefGoogle Scholar
  32. Harper, J. L. 1977.Population Biology of Plants. New York: Academic Press.Google Scholar
  33. Hildrew, A. G. 1985. A quantitative study of the life history of a fairy shrimp (Branchiopoda: Anostraca) in relation to the temporary nature of its habitat, a Kenyan rainpool.J. Anim. Ecol. 54, 99–110.CrossRefGoogle Scholar
  34. Hilu, K. W. and J. M. de Wet. 1980. Effect of artificial selection on grain dormancy inEleusine (Gramineae).Sys. Bot. 5, 54–60.CrossRefGoogle Scholar
  35. Howell, N. 1981. The effect of seed size and relative emergence time on fitness in a natural population ofImpatiens capensis Meerb. (Balsaminaceae).Am. Midl. Nat. 105, 312–320.CrossRefGoogle Scholar
  36. Kalisz, S. 1986. Variable selection on the timing of germination inCollinsia verna (Scrophulariaceae).Evolution 40, 479–491.CrossRefGoogle Scholar
  37. Kankaala, P. 1983. Resting eggs, seasonal dynamics, and production ofBosmina longispina maritima (P. E. Müller) (Cladocera) in the northern Baltic proper.J. Plank. Res. 5, 53–69.Google Scholar
  38. Karabin, A. 1978. The pressure of pelagic predators of the genusMesocyclops (Copepoda, Crustacea) on small zooplankton.Ekol. Polska 26, 241–257.Google Scholar
  39. Krylov, P. I. 1988. Predation of the freshwater cyclopoid copepodMegacyclops gigas on lake zooplankton—functional response and prey selection.Arch. Hydrobiol. 113, 231–250.Google Scholar
  40. Leinaas, H. P. and E. Bleken. 1983. Egg diapause and demographic strategy inLepidocyrtus lignorum Fabricus (Collembola; Entomobrydiae).Oecologia (Berlin)58, 194–199.CrossRefGoogle Scholar
  41. Levin, S. A., D. Cohen and A. Hastings. 1984. Dispersal strategies in patchy environments.Theor. popul. Biol. 26, 165–191.zbMATHMathSciNetCrossRefGoogle Scholar
  42. Livdahl, T. P. 1982. Competition within and between hatching cohorts of a treehole mosquito.Ecology 63, 1751–1760.CrossRefGoogle Scholar
  43. Marks, M. and S. Prince. 1981. Influence of germination date on survival and fecundity in wild lettuceLactuca serriola.Oikos 36, 326–330.Google Scholar
  44. Nisbet, R. M. and W. S. C. Gurney. 1982.Modelling Fluctuating Populations. New York: John Wiley.zbMATHGoogle Scholar
  45. Partridge, L. and P. H. Harvey. 1988. The ecological context of life history evolution.Science 241, 1449–1455.Google Scholar
  46. Phillippi, T. and J. Seger. 1989. Hedging one's evolutionary bets, revisited.Trends Ecol. Evol. 4, 41–44.CrossRefGoogle Scholar
  47. Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1986.Numerical Recipes. Cambridge, U.K.: Cambridge University Press.Google Scholar
  48. Rice, K. J. 1987. Evidence for the retention of genetic variation inErodium seed dormancy by variable rainfall.Oecologia (Berlin)72, 589–596.CrossRefGoogle Scholar
  49. Seger, J. and H. J. Brockman. 1987. What is bet-hedging?Oxford Surv. Evol. Biol. 4, 182–211.Google Scholar
  50. Silvertown, J. W. 1984. Phenotypic variety in seed germination behavior: the entogeny and evolution of somatic polymorphism in seeds.Am. Nat. 124, 1–16.CrossRefGoogle Scholar
  51. Silvertown, J. W. 1985. When plants play the field. InEvolution: Essays in Honor of John Maynard Smith, P. J. Greenwood, P. H. Harvey and M. Slatkin (Eds), pp. 143–153. Cambridge, U.K.: Cambridge University Press.Google Scholar
  52. Stearns, S. C. 1977. The evolution of life history traits: a critique of the theory and a review of the data.Ann. Rev. Ecol. Syst. 8, 145–171.CrossRefGoogle Scholar
  53. Tauber, M. J., C. A. Tauber and S. Masaki. 1986. Seasonal adaptations of insects. Oxford, U.K.: Oxford University Press.Google Scholar
  54. Tuljapurkar, S. 1990. Delayed reproduction and fitness in variable environments.Proc. Natl. Acad. Sci., U.S.A. 87, 1139–1143.CrossRefGoogle Scholar
  55. Venable, D. L. 1989. Modeling the evolutionary ecology of seed banks. InEcology of Soil Seed Banks, M. A. Leck, V. T. Parker and R. L. Simpson (Eds), pp. 67–87. New York: Academic Press.Google Scholar
  56. Venable, D. L. and L. Lawlor. 1980. Delayed germination and dispersal in desert annuals: escape in space and time.Oecologia 46, 272–282.CrossRefGoogle Scholar
  57. Waldbauer, G. P. 1978. Phenological adaptation and the polymodal emergence patterns of insects. InEvolution of Insect Migration and Diapause, H. Dingle (Ed.), pp. 127–144. Berlin: Springer-Verlag.Google Scholar
  58. Waldbauer, G. P. and J. G. Sternburg. 1973. Polymorphic termination of diapause by cecropia: genetic and geographical aspects.Biol. Bull. 145, 627–641.Google Scholar
  59. Watras, C. J. 1980. Subitaneous and resting eggs of copepods: relative rates of clutch production byDiaptomus leptopus.Can. J. Fish. Aquat. Sci. 37, 1579–1581.CrossRefGoogle Scholar
  60. Wilson, M. S. 1959. Free-living copepoda. InFresh-water Biology, W. T. Edmondson (Ed.), pp. 735–861, 2nd edition. New York: John Wiley.Google Scholar
  61. Yodzis, P. 1977. Harvesting and limiting similarity.Am. Nat. 111, 833–843.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1991

Authors and Affiliations

  • Bart T. De StasioJr
    • 1
  • Nelson G. HairstonJr
    • 1
  1. 1.Section of Ecology and SystematicsCorson Hall, Cornell UniversityIthacaU.S.A.

Personalised recommendations