Advertisement

Bulletin of Mathematical Biology

, Volume 42, Issue 2, pp 221–238 | Cite as

Qualitative analysis of a model generating long potential waves in Ba-treated nerve cells. II. Complete system

  • José Argémi
  • Maurice Gola
  • Hélène Chagneux
Article

Abstract

This paper deals with a model describing the behavior of barium-treatedApalysia neurons. The model is represented by a dynamical system, so-called “complete system”, defined in R4 and depending on a small parameter. The study of this system under zero membrane current conditions was performed with the use of the qualitative theory of singular perturbations. We show that this system has a stable periodic solution of the discontinuous type when the small parameter tends to 0+. A reduced system defined in R3, associated to the complete system was also studied: it corresponds to a constant activation of the inward current. We demonstrate that the corresponding hypothetical cell remains silent under zero current conditions.

Keywords

Periodic Solution Singular Point Singular Perturbation Potential Wave Slow Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Andronov, A. A., A. A. Vitt and S. E. Khaikin. 1966.Theory of Oscillators. Oxford: Pergamon Press.MATHGoogle Scholar
  2. Argémi, J. 1978. “Approche qualitative d'un problème de perturbations singulières dans R4”. InEquadiff 78. Convegno Int. su Equazioni Differenziali Ordinarie ed Equazioni Funzionali. Firenze, Italia. R. Conti, G. Sestini and G. Villari ed., 333–340.Google Scholar
  3. —, M. Gola and H. Chagneux. 1979. Qualitative Analysis of a Model Generating Long Potential Waves in Ba-treated Nerve Cell. I. Reduced Systems”Bull. math. Biol. 41, 665–686.MATHMathSciNetCrossRefGoogle Scholar
  4. Bendixson, I. 1901. “Sur les courbes définies par des équations différentielles.”Acta math. scand. 24, 1–88.MathSciNetGoogle Scholar
  5. El'sgol'c, L. E. 1964.Qualitative Methods in Mathematical Analysis. Transl. math. Monographs, 12— Am. Math. Soc., Providence, R.I.MATHGoogle Scholar
  6. Gola, M., C. Ducreux and H. Chagneux. 1977. “Ionic Mechanism of Slow Potential Wave Production in Barium-treated Aplysia Neurons.”J. Physiol. Paris 73, 407–440.Google Scholar
  7. — 1978. “A Model for the Production of Slow Potential Waves and Associated Spiking in Molluscan Neurons.” InAbnormal Neuronal Discharges. N. Chalazonitis and M. Boisson, ed., New York: Raven Press.Google Scholar
  8. Hodgkin, A. L. and A. F. Huxley. 1952. “A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve.”J. Physiol. London 117, 500–544.Google Scholar
  9. Minorsky, N. 1962.Nonlinear Oscillations. New York: Van Nostrand.MATHGoogle Scholar
  10. Mira, C. 1978. “Dynamique complexe engendrée par une équation différentielle d'ordre 3.” InEquadiff 78. Convegno Int. su Equazioni Differenziali Ordinarie ed Equazioni Funzionali. Firenze, Italia. R. Conti, G. Sestini and G. Villari, ed., 25–36.Google Scholar
  11. Plant, R. E. 1976. “The Geometry of the Hodgkin-Huxley Model.”Comp. Prog. Biomed. 6, 85–91.CrossRefGoogle Scholar
  12. — and M. Kim. 1976. “Mathematical Description of a Bursting Pacemaker Neuron by a Modification of the Hodgkin-Huxley Equations”.Biophys. J. 16, 227–244.CrossRefGoogle Scholar
  13. — 1977. “Crustacean Cardiac Pacemaker Model—An Analysis of the Singular Approximation.”Mathl Biosci. 36, 149–171.MATHMathSciNetCrossRefGoogle Scholar
  14. Takens, F. 1975. “Constrained Differential Equations.” In “Dynamical Systems—Warwick 1974.”Lecture Notes in Mathematics, 468, Ed. A. Manning, Berline and New York: Springer.Google Scholar
  15. Thom, R. 1972.Stabilité structurelle et morphogénèse. Reading, Mass: W. A. Benjamin.MATHGoogle Scholar
  16. Tihonov, A. N. 1948. “On the Depednence of the Solutions of Differential Equations on a Small Parameter.”Mat. Sbornik. (N.S.) 22, 193–204 (Russian).MATHMathSciNetGoogle Scholar
  17. Trautwein, W. and D. G. Kassebaum. 1961. “On the Mechanism of Spontaneous Impulse Generation in the Pacemaker of the Heart.”J. gen. Physiol. 45, 317–330.CrossRefGoogle Scholar
  18. Vogel, T. 1953. “Topologie des oscillations à déferlement.”Col. Int. Vibrations non-linéaires, Porquerolles, 1951. Pub. Sci. and Techn. Ministère de l'Air, no. 281, 237–256.Google Scholar
  19. Zeeman, E. C. 1973. “Differential Equations of the Heartbeat and Nerve Impulse.”Dynamical Systems, 683–741. M. Peixoto, ed. New York: Academic Press.Google Scholar

Copyright information

© Society for Mathematical Biology 1980

Authors and Affiliations

  • José Argémi
    • 1
  • Maurice Gola
    • 2
  • Hélène Chagneux
    • 2
  1. 1.C.N.R.S.Laboratoire de Mécanique et d'AcoustiqueMarseille Cédex 2France
  2. 2.C.N.R.S.Institute de Neurophysiologie et de PsychophysiologieMarseille Cédex 2France

Personalised recommendations