Skip to main content
Log in

Théorie chromosimique de l'inbreeding: Modèle probabiliste

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A molecular theory of inbreeding involving interactions between zones of gametic recognition (ZRG) localized on the chromosomal sets of male and female gametes is developed. This theory accounts for inbreeding effects and heterosis and raises the problem of control of embryonic development and the biological validity of the inbreeding coefficient. The mathematical analysis of this interaction system with sib matings permits the estimation of viability depression in inbred organisms. The biological validity of the model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Littérature

  • Bauer, H. et W. Beerman. 1952. “Die Polytänie der Kiesenchromosomen.”Chromosoma,4, 630–648.

    Article  Google Scholar 

  • Biémont, C. 1972. “Effets Différents sur la Fertilité de Trois Croisements Conduisant au Même Degré de Consanguinité chezDrosophila melanogaster Meig.”C.r. Acad. Sci. Paris,275, 1079–1082.

    Google Scholar 

  • —. 1974. “Analyse de Descendances Inbred chezDrosophila melanogaster en Fonction du Type de Croisement.Ibid.,278, 1095–1098.

    Google Scholar 

  • Biémont, J. C. et C. Biémont. 1973. “Réponses Différentes de la Fertilité d'Acanthoscelides obtectus à Deux Croisements Consanguins Frère-Sœur et Père-Fille.”Ibid.,276, 2593–2595.

    Google Scholar 

  • Boesiger, E. 1969. “Effets de la Consanguinité sur la Caille Japonaise.”Bull. Biol. Fr. Belg.,103, 285–304.

    Google Scholar 

  • Boveri, Th. 1887. “Ueber Differenzierung der Zellkerne während der Fruchtung des Eies vonAscaris megalocephala.”Anat. Anz.,2, 688–693.

    Google Scholar 

  • Castle, W. E. et F. W. Carpenter. 1906. “The Effect of Inbreeding, Crossbreeding and Selection upon the Fertility and Variability ofDrosophila.”Proc. Amer. Acad. Arts and Sci.,41, 729–786.

    Google Scholar 

  • Cole, L. J. et J. G. Halpin. 1922. “Results of Eight Years of Inbreeding of Rhode Island Red Flows.”Anat. Rec.,23, 97.

    Google Scholar 

  • Davidson, E. H. 1968.Gene Activity in Early Development. New York: Academic Press.

    Google Scholar 

  • Dobzhansky, Th., B. Spassky and T. Tidwell. 1963. “Genetics of Natural Populations: XXXII. Inbreeding and the Mutational and Balanced Genetic Loads in Natural Populations ofDrosophila pseudoobscura.”Genetics,48, 361–373.

    Google Scholar 

  • Dunn, L. C. 1928. “The Effect of Inbreeding and Crossbreeding on Fowls.”Inter. Kongr. Vererbungsw. Berlin,1, 609–617.

    Google Scholar 

  • Haldane, J. B. S. 1954.The Biochemistry of genetics. London: Allen & Unwin.

    Google Scholar 

  • Hyde, R. P. 1924. “Inbreeding, Outbreeding and Selection withDrosophila.”J. Exp. Zool.,40, 181–213.

    Article  Google Scholar 

  • King, H. D. 1918. “Studies on Inbreeding.”Ibid.,26, 3–54.

    Google Scholar 

  • Kosuda, K. 1972. “Synergistic effect of Inbreeding on Viability inDrosophila virilis.”Genetics,72, 461–468.

    Google Scholar 

  • Legay, J. M. 1971. “Effets de la Consanguinité sur Deux Caractères Quantitatifs chez le Ver à Soie.”Ann. Génét. Sél. anim.,34, 487–495.

    Google Scholar 

  • Lerner, J. M. 1954.Genetics Homeostasis. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Lints, F. A. 1961. “Diversity by Inbreeding inDrosophila.”Genetica,32, 177–199.

    Article  Google Scholar 

  • Malécot, G. 1948.Les Mathématiques de l'Hérédité. Paris: Masson.

    MATH  Google Scholar 

  • Metz, C. W. 1938. “Chromosome Behavior Inheritance and Sex Determination inSciara.”Amer. Naturist,72, 485–520.

    Article  Google Scholar 

  • Moutschen, J. 1971. “Sur la Consanguinité dans Trois Souches de Souris Anoures.”Arch. Zool. exp. Gén.,112, 361–373.

    Google Scholar 

  • Oortmersen, G. A., van. 1970. “Biological Significance, Genetics and Evolutionary Origin of Variability in Behaviour within and between Inbred Strains of Mice.”Behaviour,1, 1–92.

    Google Scholar 

  • Petit, C. 1963. “L'Influence du Mode de Croisement sur la Structure Génétique des Populations: la Stabilité des Populations Expérimentales de Faible Effectif.”Ann. Gén.,6, 29–35.

    Google Scholar 

  • Rasmusson, M. 1951. “Variation in Inbred Lines ofDrosophila melanogaster.”Hereditas,37, 561–563.

    Google Scholar 

  • Royer, M. 1971. “Présence de Cellules Haploïdes Parmi les Blastomères Diploïdes de l'Embryon d'Iceria purchasi Mask.”C.r. Acad. Sci. Paris,272, 3344–3347.

    Google Scholar 

  • Sved, J. A. 1973. “Short-term Heritable Changes Affecting Viability inDrosophila melanogaster.”Nature,241, 453–454.

    Article  Google Scholar 

  • Wright, S. 1921. “Systems of Mating.”Genetics,6, 111–178.

    Google Scholar 

  • —. 1922a. “Coefficient of Inbreeding and Relationships.”Am. Naturist,56, 330–338.

    Article  Google Scholar 

  • —. 1922b. “The Effects of Inbreeding and Crossbreeding on Guinea Pigs. Decline in Vigour. II: Differentiation Among Inbred Families.”U.S. Dept. Agric. Tech. Bull.,1090, 65.

    Google Scholar 

  • — et O. N. Eaton. 1929. “The Persistence of Differentiation among Inbred Families of Guinea Pigs.”Ibid.,103, 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biémont, C., Bouffette, A.R. & Bouffette, J. Théorie chromosimique de l'inbreeding: Modèle probabiliste. Bltn Mathcal Biology 36, 417–434 (1974). https://doi.org/10.1007/BF02464618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464618

Navigation