Advertisement

Mycoscience

, Volume 42, Issue 5, pp 413–421 | Cite as

Phylogenetic analysis of the non-pathogenic genusSpiromastix (Onygenaceae) and related onygenalean taxa based on large subunit ribosomal DNA sequences

  • Masato Sugiyama
  • Takashi Mikawa
Original Papers

Abstract

The phylogenetic positioning of the non-pathogenic genusSpiromastix in the Onygenales was studied based on large subunit rDNA (LSU rDNA) partial sequences (ca. 570 bp.). FourSpiromastix species and 28 representative taxa of the Onygenales were newly sequenced. Phylogenetic trees were constructed by the neighbor-joining (NJ) method and evaluated by the maximum parsimony (MP) method with the data of 13 taxa retrieved from DNA databases.Spiromastix and dimorphic systemic pathogens,Ajellomyces andParacoccidioides, appear to be a monophyletic group with 74% bootstrap probability (BP) in the NJ tree constructed with the representative taxa of the Onygenales. The tree topology was concordant with the NJ tree based on SSU rDNA sequences of our previous work and corresponded to the classification system of the Onygenales by Currah (1985) and its minor modification by Udagawa (1997) with the exception of the classification of the Onygenaceae. The Onygeneceae sensu Udagawa may still be polyphyletic, since three independent lineages were recognized. The taxa forming helicoid peridial appendages were localized to two clades on the tree. The topology of the NJ tree constructed withSpiromastix and its close relatives suggested that the helicoid peridial appendages were apomorphic and acquired independently in the two clades of the Onygenales.

Key Words

large subunit rDNA Onygenales phylogeny Spiromastix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arx, J. A. von. 1987. A re-evaluation of the Eurotiales. Persoonia13: 273–300.Google Scholar
  2. Bowman, B. H., White, T. J. and Taylor, J. W. 1996. Human pathogenic fungi and their close nonpathogenic relatives. Mol. Phylogenet. Evol.6: 89–96.PubMedCrossRefGoogle Scholar
  3. Currah, R. S. 1985. Taxonomy of the Onygenales: Arthrodermataceae, Gymnoascaceae, Myxotrichaceae and Onygenaceae. Mycotaxon24: 1–216.Google Scholar
  4. Currah, R. S. 1998. An annotated key to the genera of the Onygenales. Syst. Ascomycet.7: 1–12.Google Scholar
  5. Currah, R. S. 1994. Peridial morphology and evolution in the prototunicate ascomycetes. In: Ascomycete systematics: Problems and perspectives in the nineties, (ed. by Hawksworth, D. L.), pp. 281–293. Plenum Press, New York.Google Scholar
  6. Currah, R. S. and Locquin-Linard, M. 1988.Spiromastix grisea sp. nov. and its relationship to other Onygenaceae with helical appendages. Can. J. Bot.66: 1135–1137.CrossRefGoogle Scholar
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39: 783–791.CrossRefGoogle Scholar
  8. Fisher, M. C., Koenig, G. L., White, T. J. and Taylor, J. W. 2000. Pahthogenic clones versus environmentally driven population increase: Analysis of an epidemic of the human fungal pathogenCoccidioides immitis. J. Clin. Microbiol.38: 807–813.PubMedGoogle Scholar
  9. Fukushima, K., Nishimura, K., Takizawa, K., Sano, A., Takaki, G. M. C., Tateno, S., Takeo, K. and Miyaji, M. 1991. Ubiquinone systems ofParacoccidioides brasiliensis andBlastomyces dermatitidis. Jpn. J. med. Mycol.32: 1–4.CrossRefGoogle Scholar
  10. Fukushima, K., Takizawa, K., Okada, K. Maebayashi, Y., Nishimura, K., and Miyaji, M. 1993. Suitability of sterilization methods for ubiquinone analysis of pathogenic fungi. Trans. Mycol. Soc. Japan34: 473–480.Google Scholar
  11. Guarro, J., Cano, J. and de Vroey, Ch. 1991.Nannizziopsis (Ascomycotina) and related genera. Mycotaxon42: 193–200.Google Scholar
  12. Guarro, J., Gené, J. and de Vroey, Ch. 1993. A new species ofSpiromastix from Africa. Mycotaxon44: 307–313.Google Scholar
  13. Guého, E., LeClerc, M. C., de Hoog, G. S. and Dupount, B. 1997. Molecular taxonomy and epidemiology ofBlastomyces andHistoplasma species. Mycoses40: 69–81.PubMedCrossRefGoogle Scholar
  14. Georgiev, O. I., Nikolaev, N., Hadjiolov, A. A., Skryabin, K. G., Zakharyev, V. M. and Bayev, A. A. 1981. The structures of the yeast ribosomal RNA genes 4. Complete sequence of the 25S rRNA gene fromSaccharomyces cerevisiae. Nucl. Acids Res.9: 6953–6958.PubMedGoogle Scholar
  15. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol.16: 111–120.PubMedCrossRefGoogle Scholar
  16. Kuehn, H. H. and Orr, G. F. 1962. A new genus of Gymnoascaceae. Mycologia54: 160–167.Google Scholar
  17. Kwon-Chung, K. J. 1972.Emmonsiella capsulata: Perfect state ofHistoplasma capsulatum. Science177: 368–369.PubMedGoogle Scholar
  18. Kwon-Chung, K. J. 1975. Perfect state (Emmonsiela capsulata) of the fungus causing large-form African Histoplasmosis. Mycologia67: 980–990.PubMedGoogle Scholar
  19. LeClerc, M. C., Philippe, H. and Guèho, E. 1994. Phylogeny of dermatophytes and dimorphic fungi based on large subunit ribosomal RNA sequence comparisons. J. Med. Vet. Mycol.32: 331–341.PubMedGoogle Scholar
  20. Mori, Y., Sato, Y. and Takamatsu, S. 2000. Molecular phylogeny and radiation time of Erysiphales inferred from the nuclear ribosomal DNA sequences. Mycoscience41: 437–447.Google Scholar
  21. Oorschot, C. A. N. 1980. A revision ofChrysosporium and allied genera. Stud. Mycol.20: 8.Google Scholar
  22. O’Donnell, K. 1993.Fusarium and its near relatives. In: The fungal holomorph:Mitotic, meiotic and pleomorphic speciation in fungal systematics, (ed. by Reynolds, D. R. and Taylor, J. W.), pp. 225–233. CAB Internationa, Wallingford.Google Scholar
  23. Orr, G. F. 1976.Kuehniella, a new genus of the Gymnoascaceae. Mycotaxon4: 171–178.Google Scholar
  24. Otani, Y. 1988. Seiya Ito’s Mycological Flora of Japan. Vol. III. Ascomycotina No. 2, pp. 26–33. Yokendo, Ltd. Tokyo. (In Japanese.)Google Scholar
  25. Pan, S., Sigler, L. and Cole, G. T. 1994. Evidence for a phylogenetic connection betweenCoccidioides immitis andUncinocarpus reesii (Onygenaceae). Microbiology140: 1481–1494.PubMedCrossRefGoogle Scholar
  26. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.PubMedGoogle Scholar
  27. Scott, J. A., Malloch, D. W. and Gloer, J. B. 1993.Polytolypa, an undescribed genus in the Onygenales. Mycologia85: 503–508.Google Scholar
  28. Sigler, L. 1996.Ajellomyces crescens sp. nov., taxonomy ofEmmonsia spp., and relatedness withBlastomyces dermatitidis (teleomorphAjellomyces dermatitidis). J. Med. Vet. Mycol.34: 303–314.PubMedGoogle Scholar
  29. Sigler, L. and Carmichael, J. W. 1976. Taxonomy ofMalbranchea and some other hyphomycetes with arthroconidia. Mycotaxon4: 349–488.Google Scholar
  30. Sigler, L., Flis, A. L. and Carmichael, J. W. 1998. The genusUncinocarpus (Onygenaceae) and its synonymBrunneospora: new concepts, combinations and connections to anamorphs inChrysosporium, and further evidence of relationship withCoccidioides immitis. Can. J. Bot.76: 1624–1636.CrossRefGoogle Scholar
  31. Sugiyama, M., Ohara, A. and Mikawa, T. 1999. Molecular phylogeny of onygenalean fungi based on small subunit ribosomal DNA (SSU rDNA) sequences. Mycoscience40: 251–258.CrossRefGoogle Scholar
  32. Swofford, D. L. 1993. Phylogenetic analysis using parsimony (PAUP version 3.1.2.). Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  33. Takizawa, K., Okada, K., Maebayashi, Y., Nishimura, K., Miyaji, M. and Fukushima, K. 1994. Ubiquinone system of the form-genusChrysosporium. Mycoscience35: 327–330.CrossRefGoogle Scholar
  34. Taylor, M. L., Chávez-Tapia, C. B., Vargas-Yañez, R., Rodríguez-Arellans, G., Peña-Sandoval, G. R., Toriello, C., Pérez, A. and Reyes-Montes, M. R. 1999. Environmental conditions favoring bat infection withHistoplasma capsulatum in Mexican shelters. Am. J. Trop. Med. Hyg.61: 914–919.PubMedGoogle Scholar
  35. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res.22: 4673–4680.PubMedGoogle Scholar
  36. Uchiyama, S., Kamiya, S. and Udagawa, S. 1995.Spiromastix saturnispora, a new species from Indonesian soil. Mycoscience36: 353–357.CrossRefGoogle Scholar
  37. Udagawa, S. 1997. Taxonomic studies on Plectomycetes (Cleistocthecial ascomycetes). Nippon Kingakukai Kaiho38: 143–157. (In Japanese.)Google Scholar
  38. Udagawa, S. and Uchiyama, S. 1999. Taxonomic studies on new or critical fungi of non-pathogenic Onygenales 2. Mycoscience40: 291–305.CrossRefGoogle Scholar
  39. Vidal, P., Vinuesa, M. de los A., Sánchez-Puelles, J. M. and Guarro, J. 2000. Phylogeny of the anamorphic genusChrysosporium and related taxa based on rDNA internal transcribed spacer sequences. Rev. Iberoam Micol.17: 22–29.Google Scholar

Copyright information

© The Mycological Society of Japan 2001

Authors and Affiliations

  • Masato Sugiyama
    • 1
  • Takashi Mikawa
    • 1
  1. 1.MCC-Group Science and Technology Research CenterMitsubishi Chemical Corp.Yokohama, KanagawaJapan

Personalised recommendations