, Volume 39, Issue 3, pp 273–278 | Cite as

Isolation of a gram-positive bacterium effective in suppression of brown blotch disease of cultivated mushrooms,Pleurotus ostreatus andAgaricus bisporus, caused byPseudomonas tolaasii

  • Takanori Tsukamoto
  • Akira Shirata
  • Hitoshi Murata
Original Papers


A Gram-positive bacterium was isolated from a rottingPleurotus ostreatus fruiting body that markedly reduced the level of extracellular toxins (i.e., tolaasins) produced byPseudomonas tolaasii, the most destructive pathogen of cultivated mushrooms. The isolated bacterium is saprophytic but not parasitic nor pathogenic toP. ostreatus. A low ratio, ca. 10−3 cells of the isolated bacterium for oneP. tolaasii cells, was sufficient for detoxification in vitro. Inoculation of the isolated bacterium prevents the development of bacterial disease inP. ostreatus andAgaricus bisporus. The suppression of the disease development, however requires the initial cell density equivalent to ca. 10−1 cells of the isolated bacterium for one cells of the pathogen. The effects is ascribed to the inactivation of tolaasin by the live, suppressive bacterial cells, and not to metabolites secreted from the organism into culture media. Examination by conventional bacteriological tests and with testing kits, i.e., MicroStationTMSystem Release 3.5 (Biolog Inc., Hayward, CA), ATB Expression (bioMerieux Inc. Japan) and VITEK (bioMerieux Inc. Japan), failed to assign the organism to any defined bacterial genus. The suppressive bacterium may be useful in future for the development of biocontrol system and/or the construction of genetically modified edible fungi resistant to the disease caused byP. tolaasii.

Key Words

biocontrol agent detoxification Pleurotus ostreatus Pseudomonas tolaasii tolaasins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Birch, R. G. 1997. Synthetic disease resistance: anti-pathogenesis genes. 11th Biennial Conf. Australian Plant Pathol. Soc., Perth, Australia, Sept. 29-Oct. 2, pp. 2–6.Google Scholar
  2. Brodey, C. L., Rainey, P. B., Tester, M. and Johnstone, K. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant-Microbe Interact.4: 407–411.Google Scholar
  3. Corbell, N. and Loper, J. E. 1995. A global regulation of secondary metabolite production inPseudomonas fluorescens Pf-5. J. Bacteriol.177:6230–6236.PubMedGoogle Scholar
  4. Fermor, T. R., Henry, M. B., Fenlon, J. S., Glenister, M. J., Lincoln, S. P., and Lynch, J. M. 1991. Development and application of a biocontrol system for bacterial blotch of the cultivated mushroom. Crop Prot.10: 271–278.CrossRefGoogle Scholar
  5. Fletcher, J. T., White, P. F. and Gaze, R. H. 1989. Mushrooms: Pest and disease control, 2nd ed. Intercept Limited, Andover, Hants, England.Google Scholar
  6. Hutchinson, M. L. and Johnstone, K. 1993. Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms byPseudomonas tolaasii onAgaricus bisporus. Physiol. Mol. Plant Pathol.42: 373–384.CrossRefGoogle Scholar
  7. Laville, J., Voisard, C., Keel, C., Maurhofer, M., Defago, G. and Haas, D. 1992. Global control inPseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc. Natl. Acad. Sci. USA89: 1562–1566.PubMedCrossRefGoogle Scholar
  8. Murata, H. and Magae, Y. 1996. Toxin production in a mushroom pathogenic bacterium,Pseudomonas tolaasii strain PT814 is activated by signals present in a host,Pleurotus ostreatus, and those accumulating, in the medium in the course of bacterial growth. In: Mushroom biology and mushroom products, (ed. Royse, D. J.), pp. 483–494. Pennsylvania State Univ. Press, College Park, Penn.Google Scholar
  9. Murata, H., McEvoy J. L., Chatterjee, A., Collmer, A. and Chatterjee, A. K. 1991. Molecular cloning of anaepA gene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes inErwinia carotovora subsp.carotovora. Mol. Plant-Microbe Interact.4: 239–246.Google Scholar
  10. Murata, H., Tsukamoto, T. and Shirata, S. 1998.rtpA, A gene encoding a bacterial two-component sensor kinase, determines pathogenic traits ofPseudomonas tolaasii, the causal agent of brown blotch disease of a cultivated mushroom,Pleurotus ostreatus. Mycoscience39: 261–271.Google Scholar
  11. Nair, N. G. and Fahy, P. C. 1972. Bacteria antagonistic toPseudomonas tolaasii and their control of brown blotch of the cultivated, mushroom. J. Appl. Bacteriol.35: 439–442.PubMedGoogle Scholar
  12. Nair, N. G. and Fahy, P. C. 1976. Commerical application of biological control of mushroom bacterial blotch. Aust. J. Agric. Res.27: 415–422.CrossRefGoogle Scholar
  13. Nishiyama, K. 1981. Studies on the pathogenicity-related substances inPseudomonas coronafaciens var.atropurpurea. Bull. Natl. Inst. Agri. Sci. Ser. C35: 1–55.Google Scholar
  14. Nutkins, J. C., Mortishire-Smith, R. J., Packman, L. C., Brodey, C. L., Rainey, P. B., Johnstone, K. and Williams, D. H. 1991. Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogenPseudomonas tolaasii Paine. J. Am. Chem. Soc.113: 2621–2627.CrossRefGoogle Scholar
  15. Rainey, P. B., Brodey, C. L. and Johnstone, K. 1993. Identification of a gene cluster encoding three high-molecular-weight proteins, which is required for synthesis of tolaasin by the mushroom pathogenPseudomonas tolaasii. Mol. Microbiol.8: 643–652.PubMedGoogle Scholar
  16. Shirata, A., Sugaya, K., Takasugi, M. and Monde, K. 1995. Isolation and biological activity of toxins produced by a Japanese strain ofPseudomonas tolaasii, the pathogen of bacterial rot of cultivated Oyster mushroom. Ann. Phytopathol. Soc. Japan61: 493–502.Google Scholar
  17. Suyama, K., and Fujii, H. 1993. Bacterial disease occurred on cultivated mushroom in Japan. J. Agric. Sci. (Tokyo Univ. Agric.)38: 35–50.Google Scholar
  18. Suyama, K., Negishi, H. and Wakimoto, S. 1995. Selective medium forPseudomonas tolaasii. Ann. Phytopathol. Soc. Japan61: 255–256.Google Scholar
  19. Thorn, G. and Tsuneda, A. 1996. Molecular genetic characterization of bacterial isolates causing brown blotch on cultivated mushrooms in Japan. Mycoscience37: 409–416.CrossRefGoogle Scholar
  20. Tolaas, A. G. 1915. A bacterial disease of cultivated mushrooms. Phytopathology5:51–54.Google Scholar
  21. Wakimoto, S. 1955. Studies on the multiplication of OP1 phage (Xanthomonas oryzae bacteriophage) 1. One-step growth with experiment under various conditions. Sci. Bull. Fac. Agri. Kyushu Univ.15: 151–160.Google Scholar
  22. Zhang, L. and Birch, R. G. 1997. The gene for albicidin detoxification fromPantoea dispersa encodes an esterase and attenuates pathogenicity ofXanthomonas albilineans to sugarcane. Proc. Natl. Acad. Sci. USA94: 9984–9989.PubMedCrossRefGoogle Scholar

Copyright information

© The Mycological Society of Japan 1998

Authors and Affiliations

  • Takanori Tsukamoto
    • 3
  • Akira Shirata
    • 1
  • Hitoshi Murata
    • 2
  1. 1.Department of SericultureNational Institute of Sericultural and Entomological SciencesTsukubaJapan
  2. 2.Division of Bio-Resource DevelopmentForestry and Forest Products Research InstituteTsukubaJapan
  3. 3.Yokohama Plant Protection ServiceYokohamaJapan

Personalised recommendations