Neuroscience and Behavioral Physiology

, Volume 27, Issue 5, pp 492–495 | Cite as

Perforated synapses in the neocortex and their role in the reorganization of interneuron interactions in the post-ischemic period

  • V. V. Semchenko
  • S. S. Stepanov


Sensorimotor Cortex Synaptic Contact Synaptic Membrane Interneuron Interaction Anoxic Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Semchenko, S. S. Stepanov, V. A. Akulinin, et al., “Structural mechanisms increasing convulsive readiness in the rat brain during the post-ischemic period”, Morfologiya, No. 7-8, 66–75 (1992).Google Scholar
  2. 2.
    S. S. Stepanov, “Electrical activity in the brain during the death and resuscitation of heparinized and intact white rats”, in: Extreme and Terminal States [in Russian], Omsk (1980), No. 139, pp. 5–7.Google Scholar
  3. 3.
    A. Arai, M. Kessier, K. Lee, and G. Lynch, “Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices”, Brain Res.,532, No. 1, 63–68 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    P. E. Bickler and B. M. Hansen, “Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage”, Brain Res.,665, No. 2, 269–276 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    R. K. S. Calver and D. G. Jones, “Contribution of dendritic spines and perforated synapses to synaptic plasticity”, Brain Res. Rev.,15, 215–249 (1990).CrossRefGoogle Scholar
  6. 6.
    S. E. Dyson and D. G. Jones, “Quantitation of terminal parameters and their interrelationships in maturing central synapses: a perspective for experimental studies”, Brain Res.,183, No. 1, 43–59 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    F. H. Guldner and S. C. Philips, “Structural plasticity of synapic contacts in the central nervous system”, in: Curr. Top. Res. Synap., New York (1986), Vol. 3, pp. 147–169.Google Scholar
  8. 8.
    S.-Ch. Yong, B. Lanzino, Y. Goto, et al., “Calcium-activated proteolysis in rat neocortex induced by transient focal ischemia”, Brain Res.,661, No. 1/2, 43–50 (1994).Google Scholar
  9. 9.
    D. G. Jones and R. K. S. Calverley, “Perforated and non-perforated synapses in rat neocortex: Three-dimensional reconstructions”, Brain Res.,556, 247–258 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Ogata, Y. Yonekawa, W. Taki, et al., “Degradation of neurofilament protein in cerebral ischemia”, J. Neurosurg.,70, 103–107 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    B. K. Siesjo, “Pathophysiology and treatment of focal cerebral ischemia. Part II. Mechanisms of damage and treatment”, J. Neurosurg.,77, 337–354 (1992).PubMedGoogle Scholar
  12. 12.
    T. Wieloch and D. K. Siesjo, “Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids”, Pathol. Biol.,30, 269–277 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. V. Semchenko
  • S. S. Stepanov

There are no affiliations available

Personalised recommendations