Astrophysics and Space Science

, Volume 114, Issue 1, pp 203–208 | Cite as

Scalar fields, fluids and exact Bianchi type-V solutions

  • Mark S. Madsen
  • Grant Baillie


The Einstein field equations for a Bianchi type-V spacetime are solved in the case that the energy-momentum tensor is constructed from two massless scalar fields. This solution can be interpreted as representing an anisotropic fluid.


Scalar Field Perfect Fluid Energy Momentum Tensor Vacuum Solution Einstein Field Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ellis, G. F. R.: 1967,J. Math. Phsy. 8, 1171.CrossRefGoogle Scholar
  2. Kasner, E.: 1921,Am. J. Math. 43, 217.MATHMathSciNetCrossRefGoogle Scholar
  3. Kramer, D., Stephani, H., Herlt, E., and MacCallum, M.: 1980,Exact Solutions of Einstein's Field Equations, Cambridge Unviersity Press, Cambridge.MATHGoogle Scholar
  4. Krori, K. D. and Nandy, D.: 1984,J. Math. Phys. 25, 2515.MATHMathSciNetCrossRefADSGoogle Scholar
  5. Letelier, P. S.: 1980,Phys. Rev. D22 807.MathSciNetCrossRefADSGoogle Scholar
  6. Letelier, P. S. and Machado, R.: 1981,J. Math. Phys. 22, 827.MATHMathSciNetCrossRefADSGoogle Scholar
  7. Matravers, D. R. and Madsen, M. S.: 1985,Phys. Lett. B (to appear).Google Scholar
  8. Matravers, D. R., Vogel, D. L., and Madsen, M. S.: 1984,Class. Quantum Grav. 1, 407.MathSciNetCrossRefADSGoogle Scholar
  9. Matravers, D. R., Madsen, M. S., and Vogel, D. L.: 1985,Astrophys. Space Sci. 112, 193.CrossRefADSGoogle Scholar
  10. Misra, M. and Radhakrishna, L.: 1962,Pro. Natl. Sci. India A28, 632.MATHMathSciNetGoogle Scholar
  11. Nayak, B.K.: 1983,Gen. Rel. Grav. 15, 1067.MATHMathSciNetADSGoogle Scholar
  12. Taub, A. H.: 1951.Ann. Math. 53, 472.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Mark S. Madsen
    • 1
  • Grant Baillie
    • 1
  1. 1.Department of Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations