Il Nuovo Cimento D

, Volume 15, Issue 10, pp 1255–1262 | Cite as

Stimulated brillouin scattering of alfvén wave in a highly collisional magnetoactive compensated semiconductor: Kinetic theory

  • A. A. Mamun
Article

Summary

A rigorous theoretical investigation has been made on stimulated Brillouin scattering of electromagnetic Alfvén wave propagating in a highly collisional magnetoactive compensated semiconductor,viz. compensated germanium. By using the Krook-model solution, the Boltzmann transport equation has been solved to obtained the non-linear response of electrons and holes in the semiconductor sample immersed in an external static magnetic field. It is noticed here that the threshold of this parametric instability is quite low and the growth rate of it is considerably large at moderate power of the incident Alfvén wave. It is also noted that the effect of the electron-phonon collision frequency on this three-wave parametric process is remarkable and its growth rate decreases very rapidly with the electron-phonon collision frequency in the semiconductor.

PACS 72.30

High-frequency effects plasma effects 

PACS 72.20.Ht

High-field and nonlinear effects 

PACS 52.35.Mw

Nonlinear waves and nonlinear wave propagation (including parametric effects mode coupling, ponderomotive effects, etc 

PACS 52.35.Nx

Other nonlinear interactions and phenomena (e.g., Brillouin scattering and Rayleigh scattering) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Williams andG. E. Smith:IBM J. Res. Dev.,8, 276 (1964).CrossRefGoogle Scholar
  2. [2]
    A. Hasegawa:J. Phys. Soc. Jpn.,20, 1072 (1965).CrossRefADSGoogle Scholar
  3. [3]
    W. Beer: inSemiconductors and Semimetals, edited byR. K. Willardson, Vol. I (Academic, New York, N.Y., 1966), p. 417.Google Scholar
  4. [4]
    S. J. Buchsbaum andP. M. Platzman:Phys. Rev.,154, 395 (1967).CrossRefADSGoogle Scholar
  5. [5]
    J. R. Houck andR. Bowers:Phys. Rev.,166, 397 (1968).CrossRefADSGoogle Scholar
  6. [6]
    H. Hartnagel:Semiconductor Plasma Instabilities (Heinmann Educational Books, London, 1969).Google Scholar
  7. [7]
    M. C. Steele andB. Vural:Wave Interactions in Solid State Plasmas, Advanced Physics Monograph Series (McGraw-Hill, New York, N.Y., 1969).Google Scholar
  8. [8]
    S. Guha andS. Ghosh:J. Phys. Chem. Solids,40, 775 (1979).CrossRefADSGoogle Scholar
  9. [9]
    J. B. Gunn:Solid State Commun.,1, 88 (1963).CrossRefADSGoogle Scholar
  10. [10]
    S. Guha, P. K. Sen andS. Ghosh:Phys. Status Solidi B,91, K135 (1979).CrossRefADSGoogle Scholar
  11. [11]
    R. R. Sharma:Phys. Rev. A,21, 253 (1980).CrossRefADSGoogle Scholar
  12. [12]
    M. Salimullah andThahamina Ferdous:J. Appl. Phys.,56, 3628 (1984).CrossRefADSGoogle Scholar
  13. [13]
    K. M. Jain, Mridul Bose, S. Guha andD. P. Tewari:J. Plasma Phys.,36, 189 (1986).ADSCrossRefGoogle Scholar
  14. [14]
    A. K. Benergee, S. M. Khurshed Alam, M. N. Alam andM. Salimullah:Phys. Rev. B,37, 1180 (1988).CrossRefADSGoogle Scholar
  15. [15]
    N. A. Krall andA. W. Trivelpiece:Principle of Plasma Physics (McGraw-Hill, Kogakusha, Ltd., 1973), p. 193.Google Scholar
  16. [16]
    D. R. Nicholson:Introduction to Plasma Theory (Wiley, New York, N.Y., 1983).Google Scholar
  17. [17]
    A. A. Mamun andM. N. Alam,Phys. Rev. B,45, 5868 (1992).CrossRefADSGoogle Scholar
  18. [18]
    A. A. Mamun andM. Salimullah:Phys. Rev. B,44, 8685 (1991).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1993

Authors and Affiliations

  • A. A. Mamun
    • 1
  1. 1.Department of PhysicsJahangirnagar UniversityDhakaBangladesh

Personalised recommendations