Advertisement

Anatomy and Embryology

, Volume 178, Issue 2, pp 161–173 | Cite as

Structure and nerve cell organisation in the cerebral cortex of the dolphinStenella coeruleoalba a Golgi study

With special attention to the primary auditory area
  • I. Ferrer
  • M. Perera
Article

Summary

Cytoarchitectonic studies of the primary acoustic area, primary visual area and associative cortex of the convexity of the dolphinStenella coeruleoalba using the Golgi method revealed a thick molecular layer, an accentuated Layer II, poor stratification of the underlying laminae and the absence of an identifiable Layer IV, as well as little areal variability. The morphology and distribution of nerve cells in the three regions, resembled those already known in other mammals. Distinctive cellular types were, however, present, such as extraverted pyramidal neurons in Layer II and giant multipolar and bi-tufted cells with smooth, beaded dendrites and extended, generalized axonal arborizations in Layers III and V. Spiny stellate cells were located in the inner region of Layer III and in Layer V; these cells exhibited a long descending axon and many recurrent and oblique collaterals. Although the basic structure of the cerebral cortex is thus similar to that observed in insectivores and chiropterids, dolphins have dramatically increased numbers of cerebral convolutions exceeding those found in most advanced terrestrial mammals.

Key words

Dolphin Cetacea Cerebral cortex Golgi method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breathnach AS (1960) The cetacean nervous system. Biol Rev 35:187–230Google Scholar
  2. Ebner FF (1969) A comparison of primitive brain organization in metatherian and eutherian mammals. Ann NY Acad Sci 167:241–257Google Scholar
  3. Entin TI (1973) Histologic studies of the occipital cortex of the dolphin brain. Arkh Anat Gistol Embriol 65:92–100PubMedGoogle Scholar
  4. Fairén A, DeFelipe J, Regidor J (1984) Non-pyramidal neurons. General account. In: Peters A, Jones EG (eds) Cerebral cortex vol 1, Cellular components of the cerebral cortex, Plenum Press, New York, pp 201–253Google Scholar
  5. Feldman ML, Peters A (1978) The forms of non-pyramidal neurons in the visual cortex of the rat. J Comp Neurol 179:761–794PubMedCrossRefGoogle Scholar
  6. Ferrer I (1986) Golgi study of the isocortex in an insectivore: the common European mole (Talpa europaea). Brain Behav Evol 29:105–114PubMedGoogle Scholar
  7. Ferrer I (1987) The basic structure of the neocortex in insectivorous bats (Miniopterus sthreibersi andPipistrellus pipistrellus). A Golgi study. J Hirnforsch 28:237–243PubMedGoogle Scholar
  8. Ferrer I, Fábregues I, Condom E (1986a) A Golgi study of the sixth layer of the cerebral cortex. I.—The lissencephalic brain of Rodentia, Lagomorpha, Insectivora and Chiroptera. J Anat 145:217–234PubMedGoogle Scholar
  9. Ferrer I, Fábregues I, Condom E (1986b) A Golgi study of the sixth layer of the cerebral cortex. II.—The gyrencephalic brain of Carnivora, Artiodactyla and Primates. J Anat 146:87–104PubMedGoogle Scholar
  10. Ferrer I, Sancho S (1987) Non-pyramidal neurons of Layers I–III in the dog's cerebral cortex (parietal lobe). Acta Anat 129:43–52PubMedCrossRefGoogle Scholar
  11. Garey LJ, Winkelman E, Brauer K (1985) Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. J Comp Neurol 240:305–321PubMedCrossRefGoogle Scholar
  12. Gaskin DE (1982) The ecology of whales and dolphins. Chap V: Evolution of Cetacea, Heinemann, New Hampshire, pp 159–199Google Scholar
  13. Jacobs MS, Galaburda AM, McFarland WL, Morgane PJ (1984) The insular formation of the dolphin brain: Quantitative cytoarchitectonic studies of the insular component of the limbic lobe. J. Comp Neurol 225:396–432PubMedCrossRefGoogle Scholar
  14. Jansen J, Jansen JKS (1969) The nervous system of cetacea. In: Andersen HT (edit) The Biology of Marine Mammals, Academic Press, New York, pp 176–252Google Scholar
  15. Kesarev VS (1970) Certain data on neuronal organization of the neocortex in the dolphin brain. Arkh Anat Gistol Embriol 59:71–77PubMedGoogle Scholar
  16. Kesarev VS, Malofeyeva LI, Trykova OV (1977a) Structural organization of the cerebral neocortex in cetaceans. Ark Anat Gistol Embriol 73:23–30Google Scholar
  17. Kesarev VS, Malofeyeva LI, Trykova OV (1977b) Ecological specificity of cetacean neocortex. J Hirnforsch 18:447–460PubMedGoogle Scholar
  18. Kojima T (1951) On the brain of the sperm whale (Physeter catodon). Sci Rep Whales Res Inst Tokyo 6:49–72Google Scholar
  19. Ladygina TF, Mass AM, Supin A (1978) Multiple sensory projections in the dolphin cerebral cortex. Zh Vyssh Nerv Deiat 28:1047–1054PubMedGoogle Scholar
  20. Lorente de Nó R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system, Oxford Univ Press, London, pp 288–313Google Scholar
  21. Marin-Padilla M (1984) Neurons of Layer I. A developmental analysis. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex, Plenum Press, New York, pp 447–478Google Scholar
  22. McMullen NT, Glaser EM (1982) Morphology and laminar distribution of non-pyramidal neurons in the auditory cortex of the rabbit. J Comp Neurol 208:85–106PubMedCrossRefGoogle Scholar
  23. Morgane PJ, Jacobs MS (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 117–244Google Scholar
  24. Morgane PJ, Jacobs MS, Galaburda A (1985) Conservative features of neocortical evolution in dolphin brain. Brain Behav Evol 26:176–184PubMedGoogle Scholar
  25. Morgane PJ, Jacobs MS, Galaburda A (1986a) Evolutionary aspects of cortical organization in the dolphin brain. In: Harrison RJ, Bryden M (eds) Research on dolphins, Oxford Univ Press, Oxford, pp 71–98Google Scholar
  26. Morgane PJ, Jacobs MS, Galaburda A (1986b) Evolutionary morphology of the dolphin brain. In: Schusterman R, Thomas J, Wood F (eds) Dolphin cognition and behavior. A comparative approach. Lawrence Erlbaum Assoc, Hillsdale New Jersey, pp 5–29Google Scholar
  27. Morgane PJ, Jacobs MS, McFarland WL (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Res Bull [Suppl 3]5:1–107CrossRefGoogle Scholar
  28. Morgane PJ, McFarland WL, Jacobs MS (1982) The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. J Hirnforsch 23:465–552PubMedGoogle Scholar
  29. Norita M, Kawamura K (1981) Non-pyramidal neurons in the medial bank of the middle suprasylvian sulcus: a Golgi study in the cat. J Hirnforsch 22:9–28PubMedGoogle Scholar
  30. Peters A, Saint-Marie RL (1984) Smooth and sparsely-spinous nonpyramidal cells forming local axonal plexuses. In: Peters A, Jones EG (eds), Cerebral cortex vol. 1. Cellular components of the cerebral cortex, Plenum Press, New York, pp 419–445Google Scholar
  31. Pilleri G (1966a) Über die Anatomie des Gangesdelphins,Platanista gangetica. Rev Suisse Zool 73:113–118Google Scholar
  32. Pilleri G (1986b) Morphologie des Gehirnes des SeiwalsBalaneoptera borealis. J Hirnforsch 8:221–267Google Scholar
  33. Pilleri G, Kraus C (1969) Zum Aufbau des Cortex bei Cetaceen. Rev Suisse Zool 76:760–767PubMedGoogle Scholar
  34. Pilleri G, Kraus C, Gihr M (1968) The structure of the cerebral cortex of the Ganges dolphin Susu (Platanista gangetica). Z Mikrosk Anat Forsch 79:373–388PubMedGoogle Scholar
  35. Rose M (1926) Der Grundplan der Cortextektonic beim Delphin. J Psychol Neurol 32:161–169Google Scholar
  36. Sanides F (1972) Representation in the cerebral cortex and its areal lamination patterns. In: Bourne G (ed) The structure and function of nervous tissue. Vol V, Academic Press, New York, pp 329–453Google Scholar
  37. Sanides F, Sanides D (1972) The extraverted neurons of the mammalian cerebral cortex. Z Anat EntwGesch 136:272–293CrossRefGoogle Scholar
  38. Sanides D, Sanides F (1974) A comparative Golgi study of the neocortex in insectivores and rodents. Z Mikrosk Anat Forsch 88:957–977PubMedGoogle Scholar
  39. Sokolov VE, Ladygina TF, Supin A (1972) Localization of the sensory zones in the cerebral cortex of the dolphin. Doklady SSSR 202:490–493Google Scholar
  40. Tömböl T (1984) Layer VI cells. In: Peters A, Jones EG (eds) Cerebral cortex, Vol. 1. Cellular components of the cerebral cortex, Plenum Press, New York, pp 479–519Google Scholar
  41. Torija MS (1986) Estudio citoarquitectónico y de tipología neuronal de la corteza temporal auditiva del murciélagoRhinolophus ferrum-equinum. Tesis Doctoral, Universidad de ValenciaGoogle Scholar
  42. Valverde F, DeCarlos JA, López-Mascaraque L, Doñate-Oliver F (1986) Neocortical Layers I and II of the hedgehog (Erinaceus europaeus). II.—Thalamo-cortical connections. Anat Embryol 175:167–179PubMedCrossRefGoogle Scholar
  43. Valverde F, Facal-Valverde MV (1986) Neocortical Layers I and II of the hedgehog (Erinaceus europeaeus). I.—Intrinsic organization. Anat Embryol 173:413–430PubMedCrossRefGoogle Scholar
  44. Valverde F, López-Mascaraque L (1981) Neocortical endeavor: basic neuronal organization in the cortex of the hedgehog. In: Costa Vidrio E, Fedoroff S (eds) Glial and neuronal cell biology, Alan R Liss, New York, pp 281–290Google Scholar
  45. Winer JA (1984) The non-pyramidal cells in Layer III of cat primary auditory cortex (AI). J Comp Neurol 229:512–530PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • I. Ferrer
    • 1
  • M. Perera
    • 2
  1. 1.Unidad Neuropatología, Depto. Anatomía Patológica, Hospital Príncipes de EspañaHospitalet de LlobregatSpain
  2. 2.Depto. Ecología, Facultad de BiologíaUniversidad de BarcelonaSpain

Personalised recommendations