Advertisement

Chemical and Petroleum Engineering

, Volume 36, Issue 7, pp 397–403 | Cite as

Modern methods of producing powder steels with improved service indices

  • V. N. Antsiferov
  • A. A. Shatsov
Russian Engineering Academy — 10th Anniversary

Keywords

Compaction Powder Metallurgy Crack Resistance Maraging Steel Powder Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hayens, “Development of sintered low-alloy steels,”,Powder Metall.,32, No. 2, 140–146 (1989).Google Scholar
  2. 2.
    Hoegenas, “Iron and steel powders for sintered articles,”Prospectus of the Hoegenas Company, Sweden.Google Scholar
  3. 3.
    V. I. Klimenko, S. G. Napara-Volgina and A. N. Kostyrko, “Grade N2M nickel-molybdenum steel based on partially alloyed powder,”Poroshk. Metall., No. 1/2, 31–35 (1994).Google Scholar
  4. 4.
    A. Ya. Volchek, N. P. Grebnev, and L. Ya. Voronetskaya, “The structure and properties of powder copper-nickel-molybdenum steel,”Poroshk. Metall., No. 16, 11–14 (1992).Google Scholar
  5. 5.
    Yu. G. Dorofeev, A. G. Marinenko, and V. N. Ustimenko, “Effect of additives of carbonyl iron powder on the properties of materials produced by dynamic hot compaction,”Poroshk. Metall., No. 6, 8–12 (1990).Google Scholar
  6. 6.
    F. Dilfic,Powder Metall.,25, No. 4, 259–260 (1992).Google Scholar
  7. 7.
    S.G. Agbalyan, B. F. Badeyan, S. A. Assila et al., “Low-alloy powder steels produced in accordance with metal-oxide technology,”Poroshk. Metall., No. 1/2, 5–11 (1995).Google Scholar
  8. 8.
    W. T. Iandeska, “Low-temperature strength and ductility enhancement,”SAC Technical Paper Series, No. 820232 (1982).Google Scholar
  9. 9.
    R. U. Rueckl, “The loose-pack PM process,”Int. J. Powder Metall. and Powder Technol.,11, No. 3, 209–220 (1975).Google Scholar
  10. 10.
    Yu. A. Osinyan and A. Hauff (eds.),Innovation in Material-Production Technology [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  11. 11.
    Dennis, “Hoegenas unveils higher green-strength powder family,”MPR, No. 9, 26–27 (1997).Google Scholar
  12. 12.
    U. Engstrom, B. Johansson, and S. Andersson,Euro PM97, Mechanical Properties (1997), pp. 265–272.Google Scholar
  13. 13.
    M. Svilar, D. Berry, and E. Klar, “High-impact-strength copper-infiltrated PM steels,”Metall. Powder Report, No. 4, 278–282 (1987).Google Scholar
  14. 14.
    V. N. Antsiferov, N. N. Maslennikov, and A. A. Shatsov,Structural Strength of Concentration-Inhomogeneous Powder Steels [in Russian], Perm' (1996).Google Scholar
  15. 15.
    A. A. Shatsov, “Optimization of the composition and heat-treatment regime of a steel-copper composition material,”Izv. Vuzov. Ser. Tsvet. Metall., No. 5, 52–56 (1998).Google Scholar
  16. 16.
    V. N. Antsiferov, N. N. Maslennikov, S. N. Peshcherenko, et al.,Structural Heredity of Powder Steels [in Russian], RiTTs PM. Perm' (1996).Google Scholar
  17. 17.
    V. A. Tracey, “Nickel sintered steels. Development, status, and prospects,” in:Advances in Powder Metallurgy. World Congress, San Francisco, California, June 21–26, 1992, Vol. 5, Princeton, New Jersey (1992), pp. 227–237.Google Scholar
  18. 18.
    H. Danninger, D. Spoljaric, B. Weiss, and I. Preitfellrer, “Microstructure-property relationship of a high-strength sintered steel,” in:Advances in Powder Metallurgy and Particulate Materials: Proceedings of the Powder Metallurgy World Congress, San Francisco, California, June 21–26, 1992, Vol. 5, Princeton, New Jersey (1992), pp. 227–237.Google Scholar
  19. 19.
    S. G. Agbalyan, S. A. Assila, N. N. Manukyan, et al., “Low-alloy powder steels produced in accordance with metal-oxide technology,”Poroshk. Metall., No. 1/2, 5–11 (1995).Google Scholar
  20. 20.
    H. Masazum, M. Naok, and H. Tadatoshi, “Development of ultrahigh-strength sintered steel,” in:Advances in Powder Metallurgy and Particulate Materials: Proceedings of the Powder Metallurgy World Congress, San Francisco, California, June 21–26, 1992, Vol. 5, Princeton, New Jersey (1992), pp. 215–226.Google Scholar
  21. 21.
    C. Linbera, U. Engstrom, and P. Engdabe, “Sintered high-strength materials,” in:Advances in Powder Metallurgy and Particulate Materials: Proceedings of the Powder Metallurgy World Congress, San Francisco, California, June 21–26, 1992, Vol. 5, Princeton, New Jersey (1992), pp. 107–114.Google Scholar
  22. 22.
    V. N. Antsiferov, N. N. Maslennikov, A. A. Shatsov, and V. B. Platonova, “Effect of structure on the crack resistance of steel SP50KhZNM,”Metalloved. Term. Obrab. Met., No. 8, 32–34 (1991).Google Scholar
  23. 23.
    O. Furukimi, K. Yano, and S. Takajo, “Ultrahigh strength ferrous sintered component,”Int. J. Powder Metall.,27, No. 4, 331–337 (1991).Google Scholar
  24. 24.
    S. Takajo, “Obtaining high strength steel powder,”MRP, No. 7/8, 33 (1991).Google Scholar
  25. 25.
    V. N. Antsiferov, M. G. Latypov, and A. A. Shatsov, “Characteristic features of the trip effect in powder concentration-inhomogeneous steels with a low nickel content,”Metalloved. Term. Obrab. Met., No. 8, 15–19 (1997).Google Scholar
  26. 26.
    M. A. Filippov, V. S. Litvinov, and Yu. R. Nemirovskii,Steels with Metastable Austenite [in Russian], Metallurgiya, Moscow (1988).Google Scholar
  27. 27.
    V. N. Vinogradov, L. S. Lifshits, S. N. Platova, et al., “Wear-resistant steels with unstable austenite for components of gas-industry equipment,”Vestn. Mashnostr., No. 1 26–29 (1982).Google Scholar
  28. 28.
    Ya. M. Potak,High-Strength Steels [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  29. 29.
    L. S. Malinov, E. Ya. Kharlanova, and E. L. Malinova, “Abrasive wear resistance of high-carbon manganese-vanadium steels,”Metalloved. Term. Obrab. Met., No. 2, 25–28 (1993).Google Scholar
  30. 30.
    V. V. Dorokhov, I. V. Kiseleva, and A. A. Ryshikov, “Abrasive wear resistance of high-carbon chromium-nickel steel,”Metalloved. Term. Obrab. Met., No. 2, 30–33 (1993).Google Scholar
  31. 31.
    F. Osami, M. Kerichi, and M. Yoshiaki, “Characteristics of alloy steel powders KIP SIGMALOY 2010 for ultrahighstrength sintered materials and their hardening mechanism,”Kawasaki Steel Giho,24, No. 4, 273–278 (1992).Google Scholar
  32. 32.
    V. N. Antsiferov, N. N. Maslennikov, A. A. Shatsov, and T. V. Smyshlyaeva, “Powder steel with a metastable-austenite structure,”Poroshk. Metall., No. 3/4, 42–47 (1994).Google Scholar
  33. 33.
    A. A. Shatsov and T. V. Smyshlyaeva, “Copper-infiltrated carbide steels with a structurally unstable matrix,”Trenie Iznos,19, No. 1, 109–115 (1998).Google Scholar
  34. 34.
    V. N. Antsiferov, M. G. Latypov, and A. A. Shatsov, “High-strength crack-resistant concentration-inhomogeneous powder nickel steels,”Metalloved. Term. Obrab. Met., No. 11, 28–32 (1999).Google Scholar
  35. 35.
    V. N. Antsiferov, M. G. Latypov, and A. A. Shatsov, “Ferrotics with a metastable matrix,”Trenie Iznos.,17, No. 5, 644–652 (1996).Google Scholar
  36. 36.
    N. N. Maslennikov, N. G. Latypov, and A. A. Shatsov, “Carbide steels with improved crack resistance,”Metalloved. Term. Obrab. Met., No. 8, 20–23 (1993).Google Scholar
  37. 37.
    Russian Federation Patent No. 2120352, A method of joining components formed from powder materials.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • V. N. Antsiferov
    • 1
  • A. A. Shatsov
    • 2
  1. 1.Russian Academy of Sciences: Russian Engineering AcademyUSSR
  2. 2.Scientific Center for Powder Metallurgy (The Republican Engineering and Technical Center for Powder Metallurgy prior to 2000)Perm

Personalised recommendations