, Volume 29, Issue 6, pp 352–356 | Cite as

Role of calcineurin in regulation of high voltage-activated calcium channel activity

  • E. A. Lukyanetz


In the Review, personal data of the Author and the data of other experimenters on calcium/calmodulin-dependent protein phosphatase-2B (calcineurin) are summarized and analyzed; the role of this enzyme in regulation of the calcium channel activity in the membrane of excitable cells is discussed. A two-phase mechanism of Ca-dependent suppression of the activity of Ca channels in the molluscan neurons is described in details. Special attention is paid to the analysis of changes in the activity of Ca channels in the transfected hybrid cells overexpressing calcineurin.


Protein Phosphatase Dorsal Root Ganglion Neuron Okadaic Acid PP2B Activity Protein Phosphatase Inhibitor Okadaic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. S. Ingebritsen and P. Cohen, “The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities,”Eur. J. Biochem.,132, 255–261 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Cohen, “The structure and regulation of protein phosphatases,”Annu. Rev. Biochem.,58, 453–598 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Shenolicar and A. C. Nairn, “Protein phosphatases: recent progress,”Adv. Second Messenger Phosphoprotein Res.,23, 1–121 (1990).Google Scholar
  4. 4.
    C. B. Klee, T. H. Crouch, and M. H. Krinks, “Calcineurin: A calcium and calmodulin-binding protein of the nervous system,”Proc. Natl. Acad. Sci. USA,76, 6270–6273 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Aitken, C. B. Klee, and Ph. Cohen, “The structure of B subunit of calcineurin,”Eur. J. Biochem.,139, 663–671 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    C. B. Klee, M. H. Krinks, A. S. Manalan, et al., “Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase,”Methods Enzymol.,102, 227–244 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    D. L. Armstrong, “Calcium channel regulation by calcineurin, a Ca2+-activated phosphatase in mammalian brain,”Trends Neurosci.,12, 117–122 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Ichinose, S. Endo, and J. H. Byrne, “Role of protein phosphatases in FMRF-amide, serotonin- and cAMP-dependent modulation of membrane currents in sensory neurons ofAplysia,”Soc. Neurosci. Abstr.,16, 187 (1990).Google Scholar
  9. 9.
    G. Wiederrecht, E. Lam, S. Hung, et al., “The mechanism of action of FK-506 and Cyclosporin A,”Ann. New York Acad. Sci.,696, 9–19 (1993).CrossRefGoogle Scholar
  10. 10.
    G. M. Brill, U. Premachandran, J. P. Karwowski, et al., “Dibefurin, a novel fungal metabolite inhibiting calcineurin phosphatase activity,”J. Antibiot.,49, 124–128 (1996).PubMedGoogle Scholar
  11. 11.
    P. G. Kostyuk and O. A. Krishtal, “Separation of sodium and calcium currents in the somatic membrane of mollusc neurons,”J. Physiol.,270, 545–568 (1977).PubMedGoogle Scholar
  12. 12.
    M. M. Hosey, M. Borsotto, and M. Lazdunski, “Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca2+ channel in skeletal muscle membranes by cAMP-and ca2+-dependent processes,”Proc. Natl. Acad. Sci. USA,83, 3733–3737 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    J. E. Chad and R. Eckert, “An enzymatic mechanism for calcium current inactivation in dialysedHelix neurones,”J. Physiol.,378, 31–51 (1986).PubMedGoogle Scholar
  14. 14.
    M. Kameyama, J. Hescheler, G. Mieskes, and W. Trautwein, “The protein-specific phosphatase 1 antagonizes the β-adrenergic increase of the cardiac Ca current,”Pflügers Arch.,407, 461–463 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Hescheler, M. Kameyama, W. Trautwein, et al., “Regulation of the cardiac calcium channel by protein phosphatases,”Eur. J. Biochem.,165, 261–266 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Eckert and J. E. Chad, “Inactivation of Ca channels,”Prog. Biophys. Mol. Biol.,44, 215–267 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    R. G. Victor, F. Rusnak, R. Sikkink, et al., “Mechanism of Ca2+-dependent inactivation of L-type Ca2+ channels in GH3 cells: Direct evidence against dephosphorylation by calcineurin,”J. Membrane Biol.,156, 53–61 (1997).CrossRefGoogle Scholar
  18. 18.
    S. L. Mironov and H. D. Lux, “Calmodulin antagonists and protein phosphatase inhibitor okadaic acid fasten the ‘run-up’ of high-voltage activated calcium current in rat hippocampal neurones,”Neurosci. Lett.,133, 175–178 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    J. L. Yakel, “Inactivation of the Ba2+ current in dissociatedHelix neurons: voltage dependence and the role of phosphorylation,”Pflügers Arch.,420, 470–478 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    P. G. Kostyuk and E. A. Lukyanetz, “Mechanisms of antagonistic action of internal Ca on serotonin-induced potentiation of calcium currents inHelix neurones,”Pflügers Arch.,424, 73–83 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    P. G. Kostyuk, E. A. Lukyanetz, and P. A. Doroshenko, “Effects of serotonin and cAMP on calcium current in different neurones ofHelix pomatia,”Pflügers Arch.,420, 9–15 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    P. G. Kostyuk, E. A. Lukyanetz, and A. S. Ter-Markosyan, “Parathyroid hormone enhances calcium current in snail neurones. Simulation of the effect by phorbol ester,”Pflügers Arch.,420, 146–152 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    E. A. Lukyanetz, and P. G. Kostyuk, “Two distinct receptors operate the cAMP cascade to up-regulate L-type Ca channels,”Pflügers Arch.,432, 174–181 (1996).PubMedCrossRefGoogle Scholar
  24. 24.
    E. A. Lukyanetz, and A. V. Sotkis, “Serotonin-induced changes in the activity of single Ca2+ channels inHelix pomatia neurons,”Neirofiziologiya/Neurophysiology,28, Nos. 2/3, 132–140 (1996).Google Scholar
  25. 25.
    F. A. Antoni, R. J. Barnard, M. J. Shipston, et al., “Calcineurin feedback inhibition of agonist-evoked cAMP formation,”J. Biol. Chem.,270, 28055–28061 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    T. S. Sihra, A. C. Nairn, P. Koppenburg, et al., “A role for calcineurin (protein phosphatase-2B) in the regulation of glutamate release,”Biochem. Biophys. Res. Commun.,212, 609–616 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    J. P. Raufman, J. Y. Lin, and R. D. Raffaniello, “Calcineurin mediates calcium-induced potentiation of adenylyl cyclase activity in dispersed chief cells from guinea pig stomach—futher evidence for cross-talk between signal transduction pathways that regulate pepsinogen secretion,”J. Biol. Chem.,271, 19877–19882 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    R. J. Docherty, J. C. Yeats, S. Bevan, and H. W. G. M. Boddeke, “Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats,”Pflügers Arch.,431, 828–837 (1996).PubMedGoogle Scholar
  29. 29.
    A. F. Fomina and E. S. Levitan, “Control of Ca2+ channel current and exocytosis in rat lactotrophs by basally active protein kinase C and calcineurin,”Neuroscience,78, 523–531 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    E. A. Lukyanetz, “Evidence for colocalization of calcineurin and calcium channels in dorsal root ganglion neurones,”Neuroscience,78, 625–628 (1997).PubMedCrossRefGoogle Scholar
  31. 31.
    R. J. Docherty, J. Robbins, and D. A. Brown, “NG118-15 neuroblastoma × glioma hybrid cell line as a model neuronal system,” in:Cellular Neurobiology: a Practical Approach, H. Wheal and J. Chad (eds.), IRL, Oxford (1991), pp. 74–95.Google Scholar
  32. 32.
    E. A. Lukyanetz, and T. P. Piper, A. C. Dolphin, and T. S. Sihra, “Interaction between calcium channels and calcineurin in NG108-15 cells,”J. Physiol.,494, 79P-80P (1996).Google Scholar
  33. 33.
    L. D. Hirning, A. P. Fox, E. W. McCleskey, et al., “Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons,”Science,239, 57–61 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • E. A. Lukyanetz
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations